Abdenacer Makhlouf - Algebra and Applications 1

Здесь есть возможность читать онлайн «Abdenacer Makhlouf - Algebra and Applications 1» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Algebra and Applications 1: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Algebra and Applications 1»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book is part of Algebra and Geometry, a subject within the SCIENCES collection published by ISTE and Wiley, and the first of three volumes specifically focusing on algebra and its applications. Algebra and Applications 1 centers on non-associative algebras and includes an introduction to derived categories. The chapters are written by recognized experts in the field, providing insight into new trends, as well as a comprehensive introduction to the theory. <p>The book incorporates self-contained surveys with the main results, applications and perspectives. The chapters in this volume cover a wide variety of algebraic structures and their related topics. Jordan superalgebras, Lie algebras, composition algebras, graded division algebras, non-associative C*– algebras, H*-algebras, Krichever-Novikov type algebras, preLie algebras and related structures, geometric structures on 3-Lie algebras and derived categories are all explored. Algebra and Applications 1 is of great interest to graduate students and researchers. <p>Each chapter combines some of the features of both a graduate level textbook and of research level surveys.

Algebra and Applications 1 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Algebra and Applications 1», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

EXAMPLE 1.22.– Let Algebra and Applications 1 - изображение 88with Algebra and Applications 1 - изображение 89, Algebra and Applications 1 - изображение 90, where F is a field, char F = 3. The product in is given by The action of over - фото 91is given by:

The action of over is defined as follows - фото 92

The action of over is defined as follows Shestakov 1997 proved that B is - фото 93over is defined as follows Shestakov 1997 proved that B is an alternative - фото 94is defined as follows:

Shestakov 1997 proved that B is an alternative superalgebra and has a natural - фото 95

Shestakov (1997) proved that B is an alternative superalgebra and has a natural involution ∗ given by ( a + m )∗ = ām , картинка 96, where aā is the symplectic involution, and картинка 97.

If H 3( B , ∗) denotes the symmetric matrices with respect to the involution ∗, then H 3( B , ∗) is a simple Jordan superalgebra. It is i -exceptional, that is, it is not a homomorphic image of a special Jordan superalgebra.

THEOREM 1.2 (Racine and Zelmanov (2003)).– Let Algebra and Applications 1 - изображение 98be a finite dimensional central simple Jordan superalgebra over an algebraically closed field F of char F = p > 2. If картинка 99and картинка 100is semisimple, then J is isomorphic to one of the superalgebras in examples 1.8, 1.9, 1.10– 1.14or char F = 3 and J is the nine-dimensional degenerate Kac superalgebra (see example 1.15) or J is isomorphic to one of the superalgebras in examples 1.21and 1.22.

1.6.3. Case char F = p > 2, the even part картинка 101 is not semisimple

This case shows similarities with infinite dimensional superconformal Jordan algebras (see section 1.8) in characteristic 0.

Let us denote the algebra of truncated polynomials in m variables Let B m n B m - фото 102the algebra of truncated polynomials in m variables. Let B ( m, n ) = B ( m ) ⊗ G ( n ) be the tensor product of B ( m ) with the Grassmann algebra G ( n ) = 〈 1, ξ 1,…, ξn 〉. Then B ( m, n ) is an associative commutative superalgebra.

THEOREM 1.3 (Martínez and Zelmanov (2010)).– Let Algebra and Applications 1 - изображение 103be a finite dimensional simple unital Jordan superalgebra over an algebraically closed field F of characteristic p > 2. If the even part картинка 104is not semisimple, then there exist integers m , n and a Jordan bracket { , } on B ( m, n ) such that J = B ( m , n ) + B ( m , n ) v = KJ( B ( m , n ), { , }) is a Kantor double of B ( m , n ) or J is isomorphic to a Cheng–Kac Jordan superalgebra JCK( B ( m ), d ) for some derivation d : B ( m ) → B ( m ).

1.6.4. Non-unital simple Jordan superalgebras

Finally, let us consider non-unital simple Jordan superalgebras. As we have seen, K 3the three-dimensional Kaplansky superalgebra and K 9the nine-dimensional degenerate Kac superalgebra are examples of such superalgebras.

EXAMPLE 1.23.– Let Z be a unital associative commutative algebra, D : ZZ a derivation. Assume that Z is D -simple and that the only constants are elements α 1, αF .

Let us consider in Z the bracket { , } given by:

The above bracket is a Jordan bracket so the Kantor double V Z D Z - фото 105

The above bracket is a Jordan bracket, so the Kantor double V ( Z , D ) = Z + Zv = KJ( Z , { , }) is a simple unital Jordan superalgebra.

Now we will change the product in V ( Z , D ), modifying only the action of the even part on the odd part and preserving the product of two even (respectively, two odd) elements. Denote with juxtaposition the product on V ( Z , D ). Let a , bZ . We define the new product by:

In this way we get another Jordan superalgebra V 12 Z D that is simple - фото 106

In this way, we get another Jordan superalgebra V 1/2( Z , D ) that is simple but not unital.

It was proved in Zelmanov (2000) that:

THEOREM 1.4.– Let J be a finite dimensional simple central non-unital Jordan superalgebra over a field F . Then J is isomorphic to one of the superalgebras on the list:

1 i) the Kaplansky superalgebra K3 ( example 1.12);

2 ii) the field F has characteristic 3 and J is the degenerate Kac superalgebra ( example 1.15);

3 iii) a superalgebra V1/2(Z, D) ( example 1.23).

DEFINITION 1.14.– Let A be a Jordan superalgebra and let N be its radical, that is, the largest solvable ideal of A. The superalgebra A is said to be semisimple if N = ( 0 ).

EXAMPLE 1.24.– Let B be a simple non-unital Jordan superalgebra and let H ( B ) = B + F 1 be its unital hull. Then H ( B ) is a semisimple Jordan superalgebra that is not simple.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Algebra and Applications 1»

Представляем Вашему вниманию похожие книги на «Algebra and Applications 1» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Algebra and Applications 1»

Обсуждение, отзывы о книге «Algebra and Applications 1» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x