Abdenacer Makhlouf - Algebra and Applications 1

Здесь есть возможность читать онлайн «Abdenacer Makhlouf - Algebra and Applications 1» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Algebra and Applications 1: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Algebra and Applications 1»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book is part of Algebra and Geometry, a subject within the SCIENCES collection published by ISTE and Wiley, and the first of three volumes specifically focusing on algebra and its applications. Algebra and Applications 1 centers on non-associative algebras and includes an introduction to derived categories. The chapters are written by recognized experts in the field, providing insight into new trends, as well as a comprehensive introduction to the theory. <p>The book incorporates self-contained surveys with the main results, applications and perspectives. The chapters in this volume cover a wide variety of algebraic structures and their related topics. Jordan superalgebras, Lie algebras, composition algebras, graded division algebras, non-associative C*– algebras, H*-algebras, Krichever-Novikov type algebras, preLie algebras and related structures, geometric structures on 3-Lie algebras and derived categories are all explored. Algebra and Applications 1 is of great interest to graduate students and researchers. <p>Each chapter combines some of the features of both a graduate level textbook and of research level surveys.

Algebra and Applications 1 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Algebra and Applications 1», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Note that every algebra is a superalgebra with the trivial grading that is - фото 26

Note that every algebra is a superalgebra with the trivial grading, that is, картинка 27.

1.2. Tits–Kantor–Koecher construction

Tits (1962, 1966) made an important observation that relates Lie and Jordan structures. Let L be a Lie superalgebra whose even part contains an triple e f h that is DEFINITION 16 - фото 28contains an triple e f h that is DEFINITION 16 An - фото 29-triple { e, f, h }, that is,

DEFINITION 16 An triple e f h is said to be good if ad h L L - фото 30

DEFINITION 1.6.– An картинка 31 -triple e , f , h is said to be “good” if ad ( h ) : LL is diagonalizable and the eigenvalues are only –2, 0, 2.

In such a case, L = L – 2+ L 0+ L 2decomposes as a direct sum of eigenspaces. We can define a new product in L 2by:

With this new product J L 2 becomes a Jordan superalgebra Moreover - фото 32

With this new product, J = ( L 2, ) becomes a Jordan superalgebra.

Moreover, (Tits 1962, 1966; Kantor 1972) and (Koecher 1967) showed that every Jordan superalgebra can be obtained in this way. The corresponding Lie superalgebra is not unique, but any two such Lie superalgebras are centrally isogenous, that is, they have the same central cover. Let us recall the construction of L = TKK( J ), the universal Lie superalgebra in this class (see Martin and Piard (1992)).

CONSTRUCTION.– Consider J a unital Jordan superalgebra, and { ei } i∈Ia basis of J .

Let

Algebra and Applications 1 - изображение 33

Define a Lie superalgebra K by generators Algebra and Applications 1 - изображение 34and relations

This Lie superalgebra has a short grading K K 1 K 0 K 1where K is the - фото 35

This Lie superalgebra has a short grading K = K –1+ K 0+ K 1where

Algebra and Applications 1 - изображение 36

K is the universal Tits–Kantor–Koecher Lie superalgebra of the unital Jordan superalgebra J :

Algebra and Applications 1 - изображение 37

1.3. Basic examples (classical superalgebras)

Let Algebra and Applications 1 - изображение 38be an associative superalgebra. The new operation in the underlying vector space A given by:

defines a structure of a Jordan superalgebra on A that is denoted A - фото 39

defines a structure of a Jordan superalgebra on A that is denoted A (+).

DEFINITION 1.7.– Those Jordan superalgebras that can be obtained as subalgebras of a superalgebra A (+), with A an associative superalgebra, are called special. Superalgebras that are not special are called exceptional .

REMARK 1.2.– If we consider in the original associative superalgebra the new product given by:

we get a Lie superalgebra that is denoted as A DEFINITION 18 A - фото 40

we get a Lie superalgebra that is denoted as A (–).

DEFINITION 1.8.– A superalgebra A is simple if it does not have non-trivial graded ideals. A graded ideal is an ideal IA such that for every a = a 0+ a 1∈ I, it follows that a 0, a 1∈ I . So every graded ideal I satisfies Wall 1963 1964 proved that an arbitrary simple finite dimensional - фото 41.

Wall (1963, 1964) proved that an arbitrary simple finite dimensional superalgebra over an algebraically closed field is isomorphic to one of the following two types:

1 I) .

2 II) .

Consequently, we can easily get the first examples of simple finite dimensional Jordan superalgebras as explained above.

EXAMPLE 1.8.– EXAMPLE 19 J Q n n 2 DEFINITION 19 Let A be an - фото 42.

EXAMPLE 1.9.– J = Q ( n ) (+), n ≥ 2.

DEFINITION 1.9.– Let A be an associative superalgebra . A map ∗ : AA is a superinvolution if it satisfies :

1 i) (a∗)∗ = a, ∀a ∈ A;

2 ii) .

If ∗ : AA is a superinvolution of the associative superalgebra A , then the set of symmetric elements H ( A , ∗) is a Jordan superalgebra of A (+). Similarly, the subspace of skew-symmetric elements K ( A , ∗)= { aA | a ∗= – a } is a Lie subsuperalgebra of A (–).

The following two subsuperalgebras of Algebra and Applications 1 - изображение 43are of this type.

EXAMPLE 1.10.– Let In , Im be the identity matrices and let t be the transposition.

Let us denote Algebra and Applications 1 - изображение 44.

Then U t = U –1= – U , and ∗ : Mn+ 2m( F ) → Mn+ 2m( F ) given by

is a superinvolution The superalgebras are the Lie and Jordan orthosymplectic - фото 45

is a superinvolution.

The superalgebras

are the Lie and Jordan orthosymplectic superalgebras respectively EXAMPLE - фото 46

are the Lie and Jordan orthosymplectic superalgebras, respectively.

EXAMPLE 1.11.– The associative superalgebra Mn+n ( F ) has another superinvolution given by:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Algebra and Applications 1»

Представляем Вашему вниманию похожие книги на «Algebra and Applications 1» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Algebra and Applications 1»

Обсуждение, отзывы о книге «Algebra and Applications 1» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x