Abdenacer Makhlouf - Algebra and Applications 1

Здесь есть возможность читать онлайн «Abdenacer Makhlouf - Algebra and Applications 1» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Algebra and Applications 1: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Algebra and Applications 1»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book is part of Algebra and Geometry, a subject within the SCIENCES collection published by ISTE and Wiley, and the first of three volumes specifically focusing on algebra and its applications. Algebra and Applications 1 centers on non-associative algebras and includes an introduction to derived categories. The chapters are written by recognized experts in the field, providing insight into new trends, as well as a comprehensive introduction to the theory. <p>The book incorporates self-contained surveys with the main results, applications and perspectives. The chapters in this volume cover a wide variety of algebraic structures and their related topics. Jordan superalgebras, Lie algebras, composition algebras, graded division algebras, non-associative C*– algebras, H*-algebras, Krichever-Novikov type algebras, preLie algebras and related structures, geometric structures on 3-Lie algebras and derived categories are all explored. Algebra and Applications 1 is of great interest to graduate students and researchers. <p>Each chapter combines some of the features of both a graduate level textbook and of research level surveys.

Algebra and Applications 1 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Algebra and Applications 1», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Algebra and Applications 1 - изображение 47

The Lie and Jordan superalgebras (respectively) that consist of skew-symmetric and symmetric elements, respectively, are denoted as P n( F ) and JP n( F ) (and are also called “strange series”).

EXAMPLE 1.12.– The three-dimensional Kaplansky superalgebra K 3= Fe + ( Fx + Fy ) with multiplication table:

is a simple Jordan superalgebra Note that K 3is not unital EXAMPLE 113 The - фото 48

is a simple Jordan superalgebra. Note that K 3is not unital.

EXAMPLE 1.13.– The one-parametric family of four-dimensional superalgebras D ( t ) defined as D ( t ) = ( Fe 1+ Fe 2) + ( Fx + Fy ) with the product

The superalgebra D t is simple if t 0 In the case t 1 the - фото 49

The superalgebra D ( t ) is simple if t0 . In the case t = –1, the superalgebra D (–1) is isomorphic to M 1+1( F ) (+).

EXAMPLE 1.14.– Let V be a vector space that is ℤ/2ℤ-graded, Algebra and Applications 1 - изображение 50, and has a superform (|) : V × VF , which is symmetric on skewsymmetric in and Then - фото 51, skew-symmetric in and Then is a Jordan superalgebra where the product of two arbitrary el - фото 52and Then is a Jordan superalgebra where the product of two arbitrary elements α - фото 53. Then is a Jordan superalgebra where the product of two arbitrary elements α 1 v - фото 54is a Jordan superalgebra, where the product of two arbitrary elements α 1 + v and β 1 + ω in J is given by

for arbitrary v ω V We will refer to J as the superalgebra of a - фото 55

for arbitrary v , ωV .

We will refer to J as the superalgebra of a superform.

J is simple if and only if the form (|) is non-degenerate.

EXAMPLE 1.15.– Kac (1977a) introduced a 10 -dimensional Jordan superalgebra J whose even part has dimension 6 and splits as the direct sum of a superalgebra of a superform and a one-dimensional algebra. Thus, has the multiplication given by and any other product of two basic elements - фото 56has the multiplication given by:

and any other product of two basic elements is 0 The odd part has a basis x - фото 57

and any other product of two basic elements is 0.

The odd part has a basis x 1 x 2 y 1 y 2 and the following multiplication table - фото 58has a basis { x 1, x 2, y 1, y 2} and the following multiplication table:

Finally the action of over is given by - фото 59

Finally, the action of over is given by This superalgebra is simple if char F 3 - фото 60over is given by This superalgebra is simple if char F 3 In case of char F 3 - фото 61is given by:

This superalgebra is simple if char F 3 In case of char F 3 it has an - фото 62

This superalgebra is simple if char F ≠ 3. In case of char F = 3, it has an ideal of dimension 9 that is spanned by e , vi , 1 ≤ i ≤ 4, xj , yj , 1 ≤ j ≤ 2. It is called degenerated Kac superalgebra and is denoted by K 9.

In Medvedev and Zelmanov (1992), it is proved that the Kac superalgebra K 10is not a homomorphic image of a special Jordan superalgebra.

Benkart and Elduque (2002) realized K 10as the space of K 3⊗ K 3+ F 1 (with a new product) where K 3is the Kaplansky superalgebra.

Another (octonionic) construction of K 10was suggested in Racine and Zelmanov (2015).

1.4. Brackets

DEFINITION 1.10.– Let A be an associative commutative superalgebra . A binary map { , } : A × AA is called a Poisson bracket if

1 1) (A, { , }) is a Lie superalgebra;

2 2) {ab, c} = a{b, c} + (–1)|b||c|{a, c}b for arbitrary .

EXAMPLE 1.16.– Let F [ p 1,…, pn, q 1,…, qn ] be a polynomial algebra in 2 n variables. The classical Hamiltonian bracket:

Algebra and Applications 1 - изображение 63

is a Poisson bracket.

EXAMPLE 1.17.– Let

Algebra and Applications 1 - изображение 64

be the Grassmann algebra over an n -dimensional vector space V . Then the bracket

for arbitrary is a Poisson bracket DEFINITION 111 Given - фото 65

for arbitrary Algebra and Applications 1 - изображение 66is a Poisson bracket.

DEFINITION 1.11.– Given Algebra and Applications 1 - изображение 67 an associative commutative superalgebra , a bilinear map { , } : A × AA is called a contact bracket if :

1 i) (A, { , }) is a Lie superalgebra;

2 ii) {ab, c} = a{b, c} + (–1)|b||c|{a, c}b + abD(c) for arbitrary homogeneous elements a, b, c in A.

Note that a Poisson bracket is a contact bracket with D = 0.

EXAMPLE 1.18.– Let F [ t ] be the polynomial algebra. Then the bracket { f ( t ), g ( t )} = f ′( t ) g ( t ) – f ( t ) g ′( t ) is a contact bracket.

EXAMPLE 1.19.– Let Λ(1 : n ) be the polynomial superalgebra in one (even) Laurent variable and n (odd) Grassmann variables ξ 1,…, ξn , Λ(1 : n ) = F [ t , t –1, ξ 1,…, ξn ]. Consider картинка 68or a derivation of F t t 1 The bilinear map defined on generators of Λ1 - фото 69a derivation of F [ t , t –1]. The bilinear map defined on generators of Λ(1 : n ) by:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Algebra and Applications 1»

Представляем Вашему вниманию похожие книги на «Algebra and Applications 1» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Algebra and Applications 1»

Обсуждение, отзывы о книге «Algebra and Applications 1» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x