Abdenacer Makhlouf - Algebra and Applications 1

Здесь есть возможность читать онлайн «Abdenacer Makhlouf - Algebra and Applications 1» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Algebra and Applications 1: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Algebra and Applications 1»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book is part of Algebra and Geometry, a subject within the SCIENCES collection published by ISTE and Wiley, and the first of three volumes specifically focusing on algebra and its applications. Algebra and Applications 1 centers on non-associative algebras and includes an introduction to derived categories. The chapters are written by recognized experts in the field, providing insight into new trends, as well as a comprehensive introduction to the theory. <p>The book incorporates self-contained surveys with the main results, applications and perspectives. The chapters in this volume cover a wide variety of algebraic structures and their related topics. Jordan superalgebras, Lie algebras, composition algebras, graded division algebras, non-associative C*– algebras, H*-algebras, Krichever-Novikov type algebras, preLie algebras and related structures, geometric structures on 3-Lie algebras and derived categories are all explored. Algebra and Applications 1 is of great interest to graduate students and researchers. <p>Each chapter combines some of the features of both a graduate level textbook and of research level surveys.

Algebra and Applications 1 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Algebra and Applications 1», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

And, as it happens for quaternions, octonions are also present in many interesting geometrical situations, here we mention a few:

– the groups Spin7 and Spin8 (universal covers of SO7(ℝ) and SO8(ℝ)) can be described easily in terms of octonions;

– the fact that is a division algebra implies the parallelizability of the seven-dimensional sphere S7. Actually, S1, S3 and S7 are the only parallelizable spheres (Adams 1958; Bott and Milnor 1958; Kervaire 1958);

– the six-dimensional sphere can be identified with the set of norm 1 imaginary units: , and it is endowed with an almost complex structure, inherited from the multiplication of octonions.

S 2and S 6are the only spheres with such structures (Borel and Serre (1953));

– contrary to what happens in higher dimensions, projective planes do not need to be desarguesian. The simplest example of a non-desarguesian projective plane is the octonionic projective plane .

David R. Wilkins has compiled a large amount of material on the work of Hamilton 1, and for complete expositions on quaternions and octonions, the interested reader may consult Ebbinghaus et al. (1991) and Conway and Smith (2003).

2.3. Unital composition algebras

Composition algebras constitute a generalization of the classical algebras of the real, complex, quaternion and octonion numbers.

A quadratic form n : картинка 189on a vector space V over a field is said to be nondegenerate if its polar form is so that is if its radical - фото 190is said to be non-degenerate if its polar form

is so that is if its radical V v V n v V 0 is trivial - фото 191

is so, that is, if its radical V ⊥:= { vV : n( v , V ) = 0} is trivial. Moreover, n is said to be non-singular either if it is non-degenerate or if it satisfies that the dimension of V ⊥is 1 and n( V ⊥) ≠ 0. The last possibility only occurs over fields of characteristic 2.

DEFINITION 2.1.– A composition algebra over a field картинка 192 is a triple ( Algebra and Applications 1 - изображение 193, ∙, n) where

– (, ∙) is a non-associative algebra;

– is a non-singular quadratic form that is multiplicative, that is,

[2.4] Algebra and Applications 1 - изображение 194

for any x , картинка 195.

The unital composition algebras are called Hurwitz algebras .

For simplicity, we will usually refer to the composition algebra картинка 196.

Our goal in this section is to prove that Hurwitz algebras are quite close to ℝ, ℂ, ℍ and By linearization of 24 we obtain 25 for any x y z - фото 197.

By linearization of [2.4], we obtain:

[2.5] for any x y z PROPOSITION 22 Let - фото 198

for any x , y , z , картинка 199.

PROPOSITION 2.2.– Let ( картинка 200, ∙, n) be a Hurwitz algebra:

– either n is non-degenerate or char and is isomorphic to the ground field (with norm α ↦ α2);

– the map is an involution. That is, and for any x, . This involution is referred to as the standard conjugation;

– if ∗ denotes the conjugation of a linear endomorphism relative to n (i.e. n(f(x), y) = n(x, f∗(y)) for any x, y), then for the left and right multiplications by elements we have and ;

– any satisfies the Cayley–Hamilton equation:

– (, ∙) is an alternative algebra: x ∙ (x ∙ y) = x∙2 ∙ y and (y ∙ x) ∙ x = y ∙ x∙2 for any x, .

PROOF.– Plug t = 1 in [2.5]to get

and symmetrically we get Now if char and - фото 201

and symmetrically we get Now if char and with n a 0 then for any x - фото 202.

Now, if char картинка 203and with n a 0 then for any x so - фото 204, with n( a ) ≠ 0, then for any x , Algebra and Applications 1 - изображение 205, Algebra and Applications 1 - изображение 206, so Algebra and Applications 1 - изображение 207and ax = f ( x ) a for a linear map картинка 208. But n( a )n( x ) = n( ax ) = f ( x ) 2n( a ). Hence n( x ) = f ( x ) 2for any x and, by linearization, n( x , y ) = 2 f ( x ) f ( y ) = 0 for any x , y . We conclude that Algebra and Applications 1 - изображение 209. In this case, all the assertions are trivial.

Assuming hence that картинка 210(n is non-degenerate), since is an isometry of order 2 reflection relative to we get for any - фото 211is an isometry of order 2 (reflection relative to Algebra and Applications 1 - изображение 212) we get

Algebra and Applications 1 - изображение 213

for any x , y , z , whence Algebra and Applications 1 - изображение 214.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Algebra and Applications 1»

Представляем Вашему вниманию похожие книги на «Algebra and Applications 1» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Algebra and Applications 1»

Обсуждение, отзывы о книге «Algebra and Applications 1» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x