Abdenacer Makhlouf - Algebra and Applications 1

Здесь есть возможность читать онлайн «Abdenacer Makhlouf - Algebra and Applications 1» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Algebra and Applications 1: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Algebra and Applications 1»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book is part of Algebra and Geometry, a subject within the SCIENCES collection published by ISTE and Wiley, and the first of three volumes specifically focusing on algebra and its applications. Algebra and Applications 1 centers on non-associative algebras and includes an introduction to derived categories. The chapters are written by recognized experts in the field, providing insight into new trends, as well as a comprehensive introduction to the theory. <p>The book incorporates self-contained surveys with the main results, applications and perspectives. The chapters in this volume cover a wide variety of algebraic structures and their related topics. Jordan superalgebras, Lie algebras, composition algebras, graded division algebras, non-associative C*– algebras, H*-algebras, Krichever-Novikov type algebras, preLie algebras and related structures, geometric structures on 3-Lie algebras and derived categories are all explored. Algebra and Applications 1 is of great interest to graduate students and researchers. <p>Each chapter combines some of the features of both a graduate level textbook and of research level surveys.

Algebra and Applications 1 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Algebra and Applications 1», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Given a norm 1 quaternion q , there is an angle α ∈ [0, π ] and a norm 1 imaginary quaternion u such that q = (cos α )1 + (sin α ) u .

Consider the linear map:

Algebra and Applications 1 - изображение 172

Complete u to an orthonormal basis { u , v , u × v }. A simple computation gives:

Thus the coordinate matrix of φq relative to the basis u v u v is - фото 173 Algebra and Applications 1 - изображение 174

Thus, the coordinate matrix of φq relative to the basis { u , v , u × v } is

Algebra and Applications 1 - изображение 175

In other words, φq is a rotation around the semi-axis ℝ + u of angle 2 α , and hence the map

Algebra and Applications 1 - изображение 176

is a surjective (Lie) group homomorphism with ker φ = {±1}. We thus obtain the isomorphism

Algebra and Applications 1 - изображение 177

Actually, the group S 3is the universal cover of SO 3(ℝ).

Therefore, we get that rotations can be identified with conjugation by norm 1 quaternions modulo ±1. The outcome is that it is quite easy now to compose rotations in three-dimensional Euclidean space, as it is enough to multiply norm 1 quaternions: φp φq = φpq . From this, one can very easily deduce the 1840 formulas by Olinde Rodrigues (Rodrigues 1840) for the composition of rotations.

But there is more about rotations and quaternions.

For any p ∈ ℍ with n ( p ) = 1, the left (respectively, right) multiplication Lp (respectively, Rp ) by p is an isometry, due to the multiplicativity of the norm. Using [2.2], it follows that the characteristic polynomial of Lp and Rp is x 2− tr( p ) x + 1) 2and, in particular, the determinant of the multiplication by p is 1, so both Lp and Rp are rotations.

Now, if ψ is a rotation in ℝ 4≃ ℍ, a = ψ (1) is a norm 1 quaternion, and

Algebra and Applications 1 - изображение 178

so the composition Algebra and Applications 1 - изображение 179is actually a rotation in ℝ 3≃ ℍ 0. Hence, there is a norm 1 quaternion q ∈ ℍ such that

Algebra and Applications 1 - изображение 180

for any x ∈ ℍ. That is, for any x ∈ ℍ,

Algebra and Applications 1 - изображение 181

It follows that the map

Algebra and Applications 1 - изображение 182

is a surjective (Lie) group homomorphism with ker Ψ = {±(1, 1)}. We thus obtain the isomorphism

Algebra and Applications 1 - изображение 183

and from here we get the isomorphism SO 3(ℝ) × SO 3(ℝ) ≃ PSO 4(ℝ).

Again, this means that it is easy to compose rotations in four-dimensional space, as it reduces to multiplying pairs of norm 1 quaternions: ψp 1, q1 ψp 2, q2= ψp 1p2, q1q2.

2.2.3. Octonions

In a letter from Graves to Hamilton, dated October 26, 1843, only a few days after the “discovery” of quaternions, Graves writes:

There is still something in the system which gravels me. I have not yet any clear views as to the extent to which we are at liberty arbitrarily to create imaginaries, and to endow them with supernatural properties.

If with your alchemy you can make three pounds of gold, why should you stop there?

Actually, as we have seen in [2.3], the algebra of quaternions is obtained by doubling suitably the field of complex numbers: ℍ = ℂ ⊕ ℂ j.

Doubling again we get the octonions (Graves–Cayley):

with multiplication mimicked from 22 and usual norm n p 1 p 2 l n p - фото 184

with multiplication mimicked from [2.2]:

and usual norm n p 1 p 2 l n p 1 n p 2 for p 1 p 2 q 1 q 2 ℍ - фото 185

and usual norm: n( p 1+ p 2 l) = n( p 1) + n ( p 2), for p 1, p 2, q 1, q 2∈ ℍ.

This was already known to Graves, who wrote a letter to Hamilton on December 26, 1843 with his discovery of what he called octaves . Hamilton promised to announce Graves’ discovery to the Irish Royal Academy, but did not do it in time. In 1845, independently, Cayley discovered the octonions and got the credit. Octonions are also called Cayley numbers .

Some properties of this new algebra of octonions are summarized here:

– The norm is multiplicative: n(xy) = n(x)n(y), for any .

– is a division algebra, and it is neither commutative nor associative!

But it is alternative , that is, any two elements generate an associative subalgebra.

A theorem by Zorn (1933) asserts that the only finite-dimensional real alternative division algebras are ℝ, ℂ, ℍ and картинка 186. And hence, as proved by Frobenius (1878), the only such associative algebras are ℝ, ℂ and ℍ.

– The seven-dimensional Euclidean sphere is not a group (associativity fails), but it constitutes the most important example of a Moufang loop.

– As for ℍ, for any two imaginary octonions u, we have:

Algebra and Applications 1 - изображение 187

for the usual scalar product uv on картинка 188, and where u × v defines the usual cross-product in ℝ 7. This satisfies the identity ( u × v ) × v = ( uv ) v − ( vv ) u , for any u , v ∈ ℝ 7.

– is again a quadratic algebra: x2 − tr(x)x + n(x)1 = 0 for any , where and , where for x = a1 + u, a ∈ ℝ, , .

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Algebra and Applications 1»

Представляем Вашему вниманию похожие книги на «Algebra and Applications 1» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Algebra and Applications 1»

Обсуждение, отзывы о книге «Algebra and Applications 1» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x