Abdenacer Makhlouf - Algebra and Applications 1

Здесь есть возможность читать онлайн «Abdenacer Makhlouf - Algebra and Applications 1» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Algebra and Applications 1: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Algebra and Applications 1»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book is part of Algebra and Geometry, a subject within the SCIENCES collection published by ISTE and Wiley, and the first of three volumes specifically focusing on algebra and its applications. Algebra and Applications 1 centers on non-associative algebras and includes an introduction to derived categories. The chapters are written by recognized experts in the field, providing insight into new trends, as well as a comprehensive introduction to the theory. <p>The book incorporates self-contained surveys with the main results, applications and perspectives. The chapters in this volume cover a wide variety of algebraic structures and their related topics. Jordan superalgebras, Lie algebras, composition algebras, graded division algebras, non-associative C*– algebras, H*-algebras, Krichever-Novikov type algebras, preLie algebras and related structures, geometric structures on 3-Lie algebras and derived categories are all explored. Algebra and Applications 1 is of great interest to graduate students and researchers. <p>Each chapter combines some of the features of both a graduate level textbook and of research level surveys.

Algebra and Applications 1 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Algebra and Applications 1», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

[2.1] Algebra and Applications 1 - изображение 154

That is, he tried to get a formula for

and assumed i 2 j 2 1 The problem is how to define ijand ji With some - фото 155

and assumed i 2= j 2= −1. The problem is how to define ijand ji.

With some “modern” insight, it is easy to see that this is impossible. A non-associative (i.e. not necessarily associative) algebra over a field картинка 156is just a vector space Algebra and Applications 1 - изображение 157over Algebra and Applications 1 - изображение 158, endowed with a bilinear map (the multiplication) Algebra and Applications 1 - изображение 159, ( x , y ) ↦ xy . We will refer to the algebra ( картинка 160, m ) or simply картинка 161if no confusion arises. The algebra картинка 162is said to be a division algebra if the left and right multiplications, Lx : yxy , Rx : yyx , are bijective for any non-zero xкартинка 163. The “law of moduli” forces the algebra sought for by Hamilton to be a division algebra. But this is impossible.

PROPOSITION 2.1.– There are no real division algebras of odd dimension ≥ 3.

PROOF (See Petersson (2005)).– Given a real algebra картинка 164of odd dimension ≥ 3, and linearly independent elements x , yкартинка 165with Lx and Ly bijective, det( Lx + tLy ) is a polynomial in t of odd degree, and hence it has a real root λ. Thus, the left multiplication Lx + λyis not bijective. □

Therefore, Hamilton could not succeed. But, after years of struggle, he discovered how to overcome the difficulties in dimension 3 by making a leap to dimension 4.

In a letter (Wilkins 2020) to his son Archibald, dated August 5, 1865, Hamilton explained how vividly he remembered the date: October 16, 1843 , when he got the key idea. He wrote:

Every morning in the early part of the above-cited month, on my coming down to breakfast, your (then) little brother William Edwin, and yourself, used to ask me, “Well, Papa, can you multiply triplets”? Whereto I was always obliged to reply, with a sad shake of the head: “No, I can only add and subtract them.”

But on the 16th day of the same month – which happened to be a Monday, and a Council day of the Royal Irish Academy – I was walking in to attend and preside, and your mother was walking with me, along the Royal Canal, to which she had perhaps driven; although she talked with me now and then, yet an undercurrent of thought was going on in my mind, which gave at last a result, whereof it is not too much to say that I felt at once the importance. An electric circuit seemed to close; and a spark flashed forth, the herald (as I foresaw, immediately) of many long years to come of definitely directed thought and work, by myself if spared, and at all events on the part of others, if I should even be allowed to live long enough distinctly to communicate the discovery.

Nor could I resist the impulse – unphilosophical as it may have been – to cut with a knife on a stone of Brougham Bridge, as we passed it, the fundamental formula with the symbols, i, j, k, namely,

Algebra and Applications 1 - изображение 166

which contains the solution of the problem, but of course, as an inscription, has long since mouldered away. A more durable notice remains, however, on the Council Books of the Academy for that day (October 16, 1843), which records the fact, that I then asked for and obtained leave to read a Paper on ‘Quaternions’, at the first general meeting of the session: which reading took place accordingly, on Monday, November 13 following.

Hamilton realized that the product ijhad to be linearly independent of 1, i, j, and hence he defined the real algebra of quaternions as:

Algebra and Applications 1 - изображение 167

with multiplication determined by

Some properties of this algebra are summarized as follows For any q1 q2 - фото 168

Some properties of this algebra are summarized as follows:

– For any q1, q2 ∈ ℍ, |q1q2 | = |q1||q2| ∀q1, q2 ∈ ℍ, where for q = a + bi + cj + ck, |a + bi + cj + dk|2 = a2 + b2 + c2 + d2 is the standard Euclidean norm on ℍ ≃ ℝ4.

– ℍ is an associative division algebra, but we lose the commutativity valid for the real and complex numbers.

Therefore, S 3≃ { q ∈ ℍ : | q | = 1} is a (Lie) group. This implies the parallelizability of the three-dimensional sphere S 3.

– ℍ splits as ℍ = ℝ1 ⊕ ℍ0, where ℍ0 = ℝi ⊕ ℝj ⊕ ℝk is the subspace of purely imaginary quaternions.

Then, for any u , v ∈ ℍ 0:

Algebra and Applications 1 - изображение 169

where uv and u × v denote the usual scalar and cross-products in ℝ 3≃ ℍ 0.

– For any q = a1 + u ∈ ℍ(u ∈ ℍ0), q2 = (a2 − u ∙ u) + 2au, so

[2.2] Algebra and Applications 1 - изображение 170

with tr( q )= 2 a and n( q ) = | q | 2= a 2+ uu . That is, ℍ is a quadratic algebra .

– The map is an involution, with and .

– ℍ = ℂ ⊕ ℂj ≃ ℂ2 is a two-dimensional vector space over ℂ. The multiplication is then given by:

[2.3] for any p 1 p 2 q 1 q 2 ℂ 222 Rotations in three and four - фото 171

for any p 1, p 2, q 1, q 2∈ ℂ.

2.2.2. Rotations in three- ( and four- ) dimensional space

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Algebra and Applications 1»

Представляем Вашему вниманию похожие книги на «Algebra and Applications 1» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Algebra and Applications 1»

Обсуждение, отзывы о книге «Algebra and Applications 1» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x