Abdelkhalak El Hami - Optimizations and Programming

Здесь есть возможность читать онлайн «Abdelkhalak El Hami - Optimizations and Programming» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Optimizations and Programming: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Optimizations and Programming»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book is a general presentation of complex systems, examined from the point of view of management. There is no standard formula to govern such systems, nor to effectively understand and respond to them. The interdisciplinary theory of self-organization is teeming with examples of living systems that can reorganize at a higher level of complexity when confronted with an external challenge of a certain magnitude. Modern businesses, considered as complex systems, ideally know how to flexibly and resiliently adapt to their environment, and also how to prepare for change via self-organization. Understanding sources of potential crisis is essential for leaders, though not all crises are necessarily bad news, as creative firms know how to respond to challenges through innovation: new products and markets, organizational learning for collective intelligence, and more.

Optimizations and Programming — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Optimizations and Programming», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

REMARK.– For a comprehensive discussion of the efficiency of the simplex method, refer to [CHV 83].

1.6. Initialization of the simplex algorithm

This section presents two techniques for finding a basic realizable solution to initialize the simplex algorithm: the first is the Big M method, and the second is the Phase I method.

1.6.1. Big M method

Suppose that we wish to solve the LP

where A is an m n matrix rank A m n By adding slack variables with - фото 65

where A is an m × n matrix, rank A = m < n .

By adding slack variables (with positive or negative signs), we can always reduce the LP to the form (P) described above, with картинка 66If there is no obvious basic realizable solution to initialize the simplex algorithm, we proceed by adding artificial variables yi ≥ 0 to the constraints:

Ax = b is replaced by Ax + y = b , y = ( y 1, y 2, . . . , ym ) TThe new constraints are not equivalent to the initial constraints The yi 0 - фото 67

The new constraints are not equivalent to the initial constraints. The yi > 0 are penalized by replacing the objective function z ( x ) with

where M is some very large positive value We will choose yi bi i 1 - фото 68

where M is some very large positive value. We will choose yi = bi , i = 1, . . . , m , as a basic feasible solution to serve as the initial solution.

Since the yi significantly reduce the value of z ′, they will disappear from the basis over the course of the simplex algorithm. As they are non-basic variables, their value will be equal to zero, and the LP that is ultimately solved is the same as the program (P).

EXAMPLE 1.7.– Consider the LP

The new program is given as The first tableau is as follows - фото 69

The new program is given as

The first tableau is as follows The second tableau is as follows - фото 70

The first tableau is as follows:

The second tableau is as follows The third tableau is as follows - фото 71

The second tableau is as follows:

The third tableau is as follows The unique optimal solution is given by x 1 - фото 72

The third tableau is as follows:

The unique optimal solution is given by x 1 4 x 2 0 x 3 1 and z x 1 x - фото 73

The unique optimal solution is given by x 1= 4, x 2= 0, x 3= 1, and z ( x 1, x 2, x 3) = −6.

1.6.2. Auxiliary program or Phase I

Suppose that the LP that we wish to solve is in the standard form:

The auxiliary program method proceeds by letting M in PM and solving - фото 74

The auxiliary program method proceeds by letting M → +∞ in ( PM ) and solving the program obtained in the limit. Let

Maximizing z x y is equivalent to maximizing z x y or maximizing - фото 75

Maximizing z ′( x, y ) is equivalent to maximizing z ″ ( x, y ), or maximizing

We therefore solve the auxiliary program PA given by The simplex algorithm - фото 76

We therefore solve the auxiliary program ( PA ) given by

The simplex algorithm can now be applied to PA starting from the basic - фото 77

The simplex algorithm can now be applied to ( PA ) starting from the basic realizable solution y = b.

– First case: max z″ (y) < 0. There exists yi > 0, i ∈ {1, 2, . . . , m}. In this case, (P ) does not have any realizable solutions.

– Second case: max z″ (y) = 0. The optimal solution of (PA) can be used as an initial basic realizable solution for applying the simplex algorithm to (P ). The objective function of (P ) is expressed in terms of non-basic variables, then the simplex algorithm is applied to (P ).

REMARK.– For a minimization problem, we add instead Let us go into more detail for a minimization problem The initial - фото 78instead.

Let us go into more detail for a minimization problem. The initial tableau of the auxiliary problem is as follows:

where B I cB 1 1 1 T and the matrices A and b relate to the - фото 79

where B = I , cB = (1, 1, 1, . . .) T , and the matrices A and b relate to the auxiliary program. For the original variables i, we have ci = 0.

If ( x *, y *) is a zero-cost optimal solution of the auxiliary problem, then the artificial variable in the basis is necessarily zero, so the solution is degenerate.

If we assume that the k th basic variable is artificial, consider the k th row of the tableau and select the element of this row in column j , where j is the index of a variable in the original problem. If the element is non-zero: k leaves the basis and j enters the basis, and we pivot the tableau. But what if no such element exists? This would mean that the matrix A does not have full rank, and the row in question corresponds to a redundant constraint.

Once the optimal tableau of the auxiliary problem has been obtained and all artificial variables have left the basis, we obtain the initial tableau of the original problem P1 by deleting any columns that relate to the artificial variables and calculating the reduced initial costs: in the box reserved for the cost function The following example shows how this - фото 80in the box reserved for the cost function. The following example shows how this method works.

EXAMPLE 1.8.– Consider the following linear programming problem:

[1.10] We will first perform Phase I of the simplex algorithm After adding artificial - фото 81

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Optimizations and Programming»

Представляем Вашему вниманию похожие книги на «Optimizations and Programming» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Optimizations and Programming»

Обсуждение, отзывы о книге «Optimizations and Programming» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x