Abdelkhalak El Hami - Optimizations and Programming

Здесь есть возможность читать онлайн «Abdelkhalak El Hami - Optimizations and Programming» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Optimizations and Programming: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Optimizations and Programming»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book is a general presentation of complex systems, examined from the point of view of management. There is no standard formula to govern such systems, nor to effectively understand and respond to them. The interdisciplinary theory of self-organization is teeming with examples of living systems that can reorganize at a higher level of complexity when confronted with an external challenge of a certain magnitude. Modern businesses, considered as complex systems, ideally know how to flexibly and resiliently adapt to their environment, and also how to prepare for change via self-organization. Understanding sources of potential crisis is essential for leaders, though not all crises are necessarily bad news, as creative firms know how to respond to challenges through innovation: new products and markets, organizational learning for collective intelligence, and more.

Optimizations and Programming — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Optimizations and Programming», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

To do this, we need a second tableau where xJ is replaced by картинка 40interpreted in the same way as the first. The same linear transformation that allowed us to pass from x to картинка 41is applied to the columns of A .

The matrix A = ( aij , i = 1, . . . , m , j = 1, . . . , n ) is replaced by Ā = ( āij , i = 1, . . . , m , j = 1, . . . , n ) as follows:

[1.5] This gives 16 where i i 1 - фото 42

This gives

[1.6] where i i 1 m are the new basic variables - фото 43

where картинка 44 i , i = 1, . . . , m , are the new basic variables The last row of the new tableau is computed in the same way 17 EXAMPLE - фото 45

The last row of the new tableau is computed in the same way:

[1.7] Optimizations and Programming - изображение 46

EXAMPLE 1.5.– If we apply the above procedure to our example, we obtain Table 1.2.

Table 1.2. Second simplex tableau Optimizations and Programming - изображение 47

As we saw above the value of z increases from 0 to 8 but there are still - фото 48

As we saw above, the value of z increases from 0 to 8, but there are still negative values in the last row of the tableau, so we need to perform another change of basis by applying the formulas [1.4] and [1.3] after substituting This gives r 1 x 3leaves the basis 2 1 i - фото 49. This gives:

r 1 x 3leaves the basis 2 1 is the new basis The computation with - фото 50

r = 1, x 3leaves the basis. 2 1 is the new basis The computation with this new basis is presented in - фото 51= {2, 1} is the new basis.

The computation with this new basis is presented in Table 1.3.

Table 1.3. Third simplex tableau

The value of z now increases from 8 to This value is maximal because every - фото 52

The value of z now increases from 8 to картинка 53This value is maximal because every value in the final row is non-negative. The optimal solution is therefore картинка 54 This solution is unique because no further change of basis is possible EXAMPLE - фото 55This solution is unique because no further change of basis is possible.

EXAMPLE 1.6.– Consider the linear problem:

[1.8] Let us introduce slack variables x 3 x 4and x 5 19 This gives the - фото 56

Let us introduce slack variables x 3, x 4and x 5:

[1.9] This gives the following initial tableau with the basis x 3 x 4 x 5 The - фото 57

This gives the following initial tableau with the basis ( x 3, x 4, x 5):

The new basis is x 3 x 1 x 5 given as The next basis is x 2 x 1 x 5 - фото 58

The new basis is ( x 3, x 1, x 5) given as:

The next basis is x 2 x 1 x 5 given as Since the reduced costs are all - фото 59

The next basis is ( x 2, x 1, x 5) given as:

Since the reduced costs are all positive this tableau is optimal The optimal - фото 60

Since the reduced costs are all positive, this tableau is optimal. The optimal solution is x 1= 150 and x 2= 100, giving an optimal value of z = −1, 500, 000 for the objective function.

1.5.4. Existence and uniqueness of an optimal solution

After writing out the first simplex tableau and adding zj = − cj to the last row, there are three possible cases:

1) zj − cj ≥ 0 for j = 1, . . . , n. The basic feasible solution x is already optimal. This optimal solution may or may not be unique;

2) there exists j ∈ {1, . . . , n} such that zj −cj < 0 and aij ≤ 0 for every i ∈ J. In this case, the domain of realizable solutions is unbounded and the problem is ill-posed, since max z(x) = +∞;

3) the usual case: there exists j ∈ {1, . . . , n} such that zj − cj < 0, and there exists i ∈ J such that aij > 0. The change in basis described earlier is now possible and should be performed, possibly several times, until case (1) is reached.

Could the simplex algorithm ever fail to terminate if case (3) leads to a loop? The answer is yes, and examples have been successfully constructed. However, they are very rare in practice.

Let us therefore state two important theorems about the simplex method.

THEOREM 1.3.– Let be a basic realizable solution of P with respect to a basis J J m - фото 61be a basic realizable solution of ( P ) with respect to a basis J (| J | = m = rank ( A )). Let for every j 1 n then x is an optimal basic realizable solution - фото 62for every j = 1, . . . , n , then x is an optimal basic realizable solution.

THEOREM 1.4.– Let be a basic realizable solution of P with respect to a basis Suppose that - фото 63be a basic realizable solution of ( P ) with respect to a basis Suppose that aij 0 for every i J and for every j 1 n such - фото 64Suppose that aij ≤ 0 for every iJ and for every j ∈ {1, . . . , n } such that zjcj < 0. Then the set { z ( x ), x is a realizable solution} is unbounded.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Optimizations and Programming»

Представляем Вашему вниманию похожие книги на «Optimizations and Programming» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Optimizations and Programming»

Обсуждение, отзывы о книге «Optimizations and Programming» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x