Abdelkhalak El Hami - Optimizations and Programming

Здесь есть возможность читать онлайн «Abdelkhalak El Hami - Optimizations and Programming» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Optimizations and Programming: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Optimizations and Programming»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book is a general presentation of complex systems, examined from the point of view of management. There is no standard formula to govern such systems, nor to effectively understand and respond to them. The interdisciplinary theory of self-organization is teeming with examples of living systems that can reorganize at a higher level of complexity when confronted with an external challenge of a certain magnitude. Modern businesses, considered as complex systems, ideally know how to flexibly and resiliently adapt to their environment, and also how to prepare for change via self-organization. Understanding sources of potential crisis is essential for leaders, though not all crises are necessarily bad news, as creative firms know how to respond to challenges through innovation: new products and markets, organizational learning for collective intelligence, and more.

Optimizations and Programming — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Optimizations and Programming», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

This relaxation often produces a very good relaxation value, far better than continuous relaxation.

Consider the following LP:

[1.11] To each constraint i I we assign a real number λ i 0 called the Lagrange - фото 104

To each constraint iI , we assign a real number λ i≥ 0 called the Lagrange multiplier. We also define the vector λ = (λ i, 0 iI ). The Lagrangian function is then defined as

This function has the two vector arguments x and λ and takes values in ℝ - фото 105

This function has the two vector arguments x and λ and takes values in ℝ. Suppose that the PL is such that the problem min x∈S x λ has an optimal solution for every λ 0 More details are given in - фото 106( x , λ) has an optimal solution for every λ ≥ 0.

More details are given in Chapter 7. Now consider the following LP [FLE 10]:

[1.12] We obtain the optimal solution 0 11 44 T which gives the optimal cost - фото 107

We obtain the optimal solution (0, 1.1, 4.4) T , which gives the optimal cost as z * = 6.6.

By relaxing the third constraint ( x 1+ x 2≥ 4.4) and keeping the integrality constraints on the variables xi , we obtain the following LP by adding the expression λ(4.4 − x 1− x 3) to the objective function, where λ is the Lagrangian relaxation coefficient, which is updated at each iteration of the method:

[1.13] The last constraint is added to bound the variables xi This guarantees that - фото 108

The last constraint is added to bound the variables xi . This guarantees that the problem is bounded for every λ > 0. The coefficient λ is updated as follows: λ k+1= max Optimizations and Programming - изображение 109It can be shown that λ tends to 1 and z tends to 8.4.

1.10. Postoptimal analysis

Consider the LP:

[1.14] Optimizations and Programming - изображение 110

We will now perform a postoptimal analysis of the optimal solution in terms of the problem data, also known as a sensitivity analysis. In other words, how does the solution or the objective function vary if we modify one of the entries of the vectors c or b , or the matrix A ?

To conduct a postoptimal analysis, we need to be able to express the solution of the simplex algorithm in terms of the initial problem data instead of simplex tableaus, which change at each iteration.

As always, we introduce slack variables to the problem [1.14], writing A for the resulting matrix of size m × ( m + n ). We also assume that the basic variables B of the optimal solution xB are known. This information can be read off from the final tableau of the simplex algorithm, which is why this procedure is called postoptimal analysis.

Let B = { x j1, x j2, . . . , xjm } be the list of basic variables, and let N be its complement with respect to the index set {1, 2, . . . , m + n }. For example, if m = n = 3 and B = { x 1, x 5, x 2}, then N = { x 3, x 4, x 6}. Based on the sets B and N , we can extract the following submatrices of A :

– AB is the submatrix formed by the columns corresponding to the variables of B. We take them in the order specified by B.

– AN is the submatrix formed by the columns corresponding to the variables of N in the order specified by N.

EXAMPLE 1.11.– Consider the problem

[1.15] The matrix system Ax b with slack variables is given as The final tableau of - фото 111

The matrix system Ax = b with slack variables is given as

The final tableau of the simplex algorithm is written as We therefore indeed - фото 112

The final tableau of the simplex algorithm is written as

We therefore indeed have B x 1 x 5 x 2 and N x 3 x 4 x 6 The - фото 113

We therefore indeed have B = { x 1, x 5, x 2} and N = { x 3, x 4, x 6}. The submatrices AB and AN can be written as:

Using a block partition based on the index sets B and N we can write The - фото 114

Using a block partition based on the index sets B and N , we can write

The solution can be computed algebraically The matrix AB is invertible because - фото 115

The solution can be computed algebraically The matrix AB is invertible because B is a - фото 116can be computed algebraically. The matrix AB is invertible because B is a basis. The optimal solution is given by the formula since the nonbasic variables must be zero ie xN 0 In our example we - фото 117since the non-basic variables must be zero, i.e. xN = 0. In our example, we have

which is the correct optimal solution according to the final simplex tableau - фото 118

which is the correct optimal solution according to the final simplex tableau. The other columns of the final tableau correspond to

which are indeed the columns that correspond to N x 3 x 4 x 6 1101 - фото 119

which are indeed the columns that correspond to N = { x 3, x 4, x 6}.

1.10.1. Effect of modifying b

Let us analyze the effect of modifying the vector b . In other words, we shall study the behavior of the solution of the modified problem when b is replaced by Optimizations and Programming - изображение 120= bb .

[1.16] Optimizations and Programming - изображение 121

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Optimizations and Programming»

Представляем Вашему вниманию похожие книги на «Optimizations and Programming» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Optimizations and Programming»

Обсуждение, отзывы о книге «Optimizations and Programming» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x