Abbildung 2.14Teilchenmodell einer Flüssigkeit
Dies ist der Grund, warum Sie in der Badeanstalt tunlichst nur in ein mit Wasser gefülltes Becken springen sollten. Die Wassermoleküle können sich gegeneinander bewegen, sind aber nicht völlig frei beweglich, bremsen ihre Bewegungsenergie daher ab. Luftmoleküle sind dagegen völlig frei beweglich und verringern Ihre Bewegungsenergie daher nur unmerklich. Da Feststoffmoleküle vollständig an ihren Platz gebunden sind, bewegen sie sich nicht, was Sie bei einem Sturz schmerzlich bestätigen können.
Da sich die Teilchen trotz teils größerer Abstände gegenseitig beeinflussen, können Flüssigkeiten nur in wenigen Fällen als näherungsweise ideal betrachtet werden.
Bei Flüssigkeiten ist die Volumenausdehnung bei Temperaturänderung zu berücksichtigen:
(2.19) 
Bei einer Temperaturänderung Δ T ändert sich das Volumen vom Anfangszustand V 0auf den Endzustand
proportional zum Volumenausdehnungskoeffizienten γ . Typische Werte für den Volumenausdehnungskoeffizienten sind:
Wasser:
Benzin:
Schwefelsäure:
Methanol:
Olivenöl:
Wasser stellt auch hier eine Besonderheit dar, es dehnt sich im Vergleich zu anderen Flüssigkeiten nur sehr wenig aus.
Bei Benzin ist im Sommer die Volumenausdehnung zu berücksichtigen, wenn das Kraftfahrzeug frisch getankt in der Sonne steht. Das Benzin dehnt sich aus, ein Tank braucht daher eine gewisse Druckfestigkeit.
In Abbildung 2.15sehen Sie das Teilchenmodell eines Feststoffs. Hier sind die Teilchen nur wenig in Bewegung, sie können nur um eine feste Position, ihren Gitterplatz, schwingen. Ferner rotieren sie um ihre eigene Achse. Zwischen den Teilchen wirken verschiedene Kräfte: Van-der-Waals-Kräfte zwischen Atomen und Molekülen sowie elektrostatische Kräfte zwischen Ionen. Durch die schwache Bewegung und die feste Bindung untereinander sind die Teilchen regelmäßig angeordnet und lassen sich nicht oder nur durch sehr große Kräfte gegeneinander verschieben.
Abbildung 2.15Teilchenmodell eines Feststoffs
Das ist wie bei einer guten Partnerschaft, da sind die Partner auch regelmäßig angeordnet, bewegen sich nur noch wenig, der eine Partner weiß, wo der andere sich befindet, immer in der Nähe.
Daraus folgt, dass
die Form des Feststoffs unverändert bleibt,
Feststoffe sich nur schwer zerteilen lassen (um bei der Partnerschaft zu bleiben: Feststoffe können sich nur schwer scheiden lassen, dazu sind große äußere Kräfte erforderlich, dies werden Sie bei der Vorstellung der mechanischen Verfahrenstechnik noch lernen),
Feststoffe spröde sind und sich nur schwer umformen lassen.
Je höher die Temperatur ist, desto stärker schwingen und rotieren die Teilchen, sie bleiben aber weiterhin in engem Abstand zueinander.
Bei Feststoffen ist die Längenausdehnung zu berücksichtigen. Sie kennen dieses Problem bei Bahnschienen und Brücken, bei denen die Längenausdehnung zwischen Sommer (warm) und Winter (kalt) kompensiert werden muss. Ähnlich der Volumenausdehnung bei Flüssigkeiten ist die Längenausdehnung
proportional zur Temperaturänderung
und der Ursprungslänge L 0:
(2.20) 
Die Proportionalitätskonstante α wird als linearer Ausdehnungskoeffizient bezeichnet und ist eine stoffspezifische Konstante:
Marmor:
Stahl:
Beton:
Aluminium: .
Sie sehen, dass Stahl und Beton identische lineare Ausdehnungskoeffizienten aufweisen. Daher ist es möglich, Beton mit Stahleinlagen zu Stahlbeton zu verbinden. Bei unterschiedlichen Ausdehnungskoeffizienten würde dies ansonsten unweigerlich zu internen Spannungen und damit zu Rissen führen.
Problematisch bei der Beschreibung von Feststoffpartikeln sind deren unterschiedliche Formen. Abbildung 2.16zeigt beispielhaft einige Partikelformen.
Abbildung 2.16Partikelformen
Wie wollen Sie diese unterschiedlichen Formen beschreiben? Um dieses Problem zu lösen, werden Partikel immer als Kugeln betrachtet. Hier genügt der Durchmesser, um die Partikel eindeutig zu charakterisieren. Welcher Kugeldurchmesser ist aber für die Partikelformen 1, 2, 3 und 5 richtig? Sie sehen, die eindeutige Beschreibung von Feststoffpartikeln gestaltet sich sehr schwierig. Diese Problematik wird daher ausführlich in Kapitel 6beschrieben.
In der Verfahrenstechnik sind Phasenübergänge von besonderer Bedeutung.
Bei einem Kraftwerk wird Wasser verdampft. Der Dampf treibt die Dampfturbine an, diese den Generator, der den Strom erzeugt. Auch im täglichen Leben begegnen wir dem Phänomen der Aggregatzustandsänderung. Wenn Sie ein Stück Fleisch braten, geben Sie feste Butter in die Pfanne, die durch Wärmezufuhr schnell flüssig wird. Schokolade schmilzt in der Sonne. Kupferrohre können durch Löten verbunden werden. Hierzu erhitzen Sie das Lötzinn, bis es flüssig wird. Ist es wieder fest, sind die Rohre formschlüssig verbunden.
Phasenübergänge bei Wasser
Besonders gut lassen sich Phasenübergänge am Beispiel des Wassers erklären. In Abbildung 2.17sind die Phasenübergänge
Schmelzen,
Erstarren,
Verdampfen,
Kondensieren,
Sublimation und
Resublimation
Читать дальше