Spectroscopy for Materials Characterization

Здесь есть возможность читать онлайн «Spectroscopy for Materials Characterization» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Spectroscopy for Materials Characterization: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Spectroscopy for Materials Characterization»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

SPECTROSCOPY FOR MATERIALS CHARACTERIZATION
Learn foundational and advanced spectroscopy techniques from leading researchers in physics, chemistry, surface science, and nanoscience Spectroscopy for Materials Characterization,
Simonpietro Agnello
Spectroscopy for Materials Characterization

Spectroscopy for Materials Characterization — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Spectroscopy for Materials Characterization», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

3.2.1.1 Dispersion Effect: Group Velocity Dispersion

When dealing with optical pulses with femtosecond pulse durations, it is important to consider the effects of group velocity dispersion (GVD). The latter affects the duration of a light pulse which traverses any media, because of the frequency dependence of the refractive index n ( ω ). GVD is defined as:

(3.1) where v gis the group velocity The latter can be written as 32 GVD is - фото 295

where v gis the group velocity. The latter can be written as:

(3.2) GVD is measured in fs 2mm 1and in a transparent region is typically positive - фото 296

GVD is measured in fs 2mm −1and, in a transparent region, is typically positive because of the characteristic dependence of n on frequency. During propagation, every spectral component of the pulse acquires a different delay, resulting in a temporal broadening of the pulse without any spectral changes [21]. To visualize the effect of GVD on a Gaussian pulse passing through a medium, a simulation is shown in Figure 3.1. From top to bottom, three pulses are shown, representing a transform‐limited Gaussian with FWHM = 5 fs centered at 550 nm, and the same pulse after passing through 1 or 2 mm SiO 2, respectively. As evident from the figure, GVD substantially enlarges the pulse duration, increasing it to several hundreds of femtoseconds. The pulse duration Δ t , that is the FWHM of the Gaussian intensity profile, broadens to Δ t bgiven by:

(3.3) where L is the propagation length inside the material 19 Besides broadening - фото 297

where L is the propagation length inside the material [19]. Besides broadening, GVD causes a frequency chirp , that is a time dependence of the instantaneous frequency of the pulse, given by Spectroscopy for Materials Characterization - изображение 298. In Figure 3.1, the chirp is evident from the comparison of the frequencies of the two sides of the pulse, showing that the instantaneous frequency is redder in the front part of the pulse and bluer in the back [19, 20], which is exactly the effect of a positive GVD. In particular, the instantaneous frequency acquires an approximately linear time dependence, ω ( t ) = ω 0+ αt , because the phase of the wave acquires a quadratic time term.

Figure 31Panel a Simulation of a gaussian pulse centered at 550 nm with - фото 299

Figure 3.1Panel (a): Simulation of a gaussian pulse centered at 550 nm with FHWM = 5 fs (first curve from the top) after propagation through a SiO 2medium of 1 mm thickness (second curve) and 2 mm (third curve). Panel (b and c): zooms of the tails of the black pulse (squares). Each wavelength is delayed by a different phase, resulting in a longer pulse with a positive chirp (the redder frequencies are faster than the bluer).

Pulse broadening and chirp acquired by femtosecond pulses during their propagation in optical setups need to be put under control in order to preserve good time resolution. One way to do it is to limit the use of transparent optical components, preferring the use of reflective optics only. Some special methods exist to manipulate the chirp, such as what is called a pulse compressor, built by using a pair of prisms or gratings. In a pulse compressor, one can add negative GVD (redder part of a pulse propagates slower than the blue part) which compensates the effect of pulse broadening in a transparent media, recompressing the pulse [19, 20].

Last but not least, dispersion also affects the temporal overlap of two pulses centered at different wavelengths which pass through the same medium, because their group velocities are generally different: this effect is called group velocity mismatch , or GVM. Thereby, if the pulses are initially overlapping in time at a certain point in space, they overlap no more after some propagation distance within a dispersive medium. The GVM effect, for example, can be very important in the generation of pulses through nonlinear effects because it can limit the effective interaction length between the two pulses.

3.2.2 Nonlinear Optics: Basis and Applications

3.2.2.1 Second Harmonic Generation and Sum Frequency Generation

Second harmonic generation (SHG) is a nonlinear optical phenomenon in which two photons of the same frequency, interacting in a nonlinear material, are converted in a single photon with doubled frequency [22]. The polarization картинка 300of a medium excited by an electrical field can be expressed as 19 20 34 where in general χ nis a tensor The - фото 301can be expressed as [19, 20]:

(3.4) where in general χ nis a tensor The first term of the equation describes - фото 302

where, in general, χ (n)is a tensor. The first term of the equation describes the phenomena usually encountered in linear optics, while the other describes nonlinear effects at different orders in the electric field. Under certain conditions ( χ (2)≠ 0, as generally occurs in a non‐centrosymmetrical medium), two photons at the same frequency ω 1, passing through an appropriate medium, are combined to generate a new photon with a doubled frequency (2 ω 1). The process follows the laws of energy ( ω 1+ ω 1= 2 ω 1) and momentum conservation ( Spectroscopy for Materials Characterization - изображение 303) and in not‐depleted pump condition (that is, negligible pump absorption) it is possible to describe the intensity of the new beam as [19, 20]:

(3.5) where n is the refractive index L is the optical path within the nonlinear - фото 304

where n is the refractive index, L is the optical path within the nonlinear material, Δ k = k 2− 2 k 1is the so‐called phase mismatch, and χ effis the effective susceptibility which is a certain combination of the components of the χ (2)tensor, which depends on the material and on its orientation. The intensity of the new beam depends on the square of the incident beam intensity, on the length L (with a quadratic dependence if Δ k = 0), and on the degree of phase mismatch. Fulfilling the condition Δ k = 0, named phase matching , gives maximally efficient SHG, and corresponds to the conservation of momentum in the process. It can be seen as a situation in which first and second harmonic beams propagate in the medium with the same speed. In order to achieve this, the refractive index at ω and 2 ω has to be the same. Although this is not generally possible in isotropic media, such a limitation can be overcome by using (uniaxial) birefringent media such as beta‐barium borate (BBO). The latter display two different refractive indexes, ordinary ( n o), and extraordinary ( n e), for beams with two orthogonal polarizations, where the extraordinary index also depends on the angle θ between the картинка 305of the beam and the optical axis of the crystal. Thus, one can achieve phase matching, for example, if the beam at ω propagates as an ordinary beam, while the beam at 2 ω propagates as an extraordinary beam. Then, changing the orientation of the crystal, it is possible to find an angle θ for which n e(2 ω , θ ) = n o( ω ), fulfilling the phase matching condition.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Spectroscopy for Materials Characterization»

Представляем Вашему вниманию похожие книги на «Spectroscopy for Materials Characterization» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Spectroscopy for Materials Characterization»

Обсуждение, отзывы о книге «Spectroscopy for Materials Characterization» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x