Emil Zolotoyabko - Introduction to Solid State Physics for Materials Engineers

Здесь есть возможность читать онлайн «Emil Zolotoyabko - Introduction to Solid State Physics for Materials Engineers» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Introduction to Solid State Physics for Materials Engineers: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Introduction to Solid State Physics for Materials Engineers»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A concise, accessible, and up-to-date introduction to solid state physics  Solid state physics is the foundation of many of today’s technologies, including transistors, LEDs, optoelectronics, and communications.   offers a guide to basic concepts and provides an accessible framework for understanding this highly application-relevant subject for materials engineers. The text links the fundamentals of modern materials, such as graphene and photonic materials, and of applications, such as high-temperature superconductors and MOSFETs. Written by a noted expert and experienced instructor, the book contains numerous worked examples throughout to help the reader gain a thorough understanding of the concepts and information presented. 
The text covers a wide range of relevant topics, including electron waves in crystals, electrical conductivity in semiconductors, light interaction with metals and dielectrics, light interaction with semiconductors, cooperative phenomena in electron systems, cooperative phenomena in electron systems, ferroelectricity as a cooperative phenomenon, and more. This important book: 
Provides a big picture view of solid state physics Contains examples of basic concepts and applications Offers a highly accessible text that fosters real understanding Presents a wealth of helpful worked examples Written for students of materials science, engineering, and physics, 
 is an important guide to help foster an understanding of solid state physics.

Introduction to Solid State Physics for Materials Engineers — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Introduction to Solid State Physics for Materials Engineers», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Table of Contents

1 Cover

2 Title Page

3 Copyright Author Professor Emil Zolotoyabko Technion - Israel Institute of Technology Department of Materials Science and Engineering Technion City 32000 Haifa Israel All books published by WILEY-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate. Library of Congress Card No.: applied for British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at < http://dnb.d-nb.de >. © 2021 WILEY-VCH GmbH, Boschstr. 12, 69469 Weinheim, Germany All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law. Print ISBN: 978-3-527-34884-8 ePDF ISBN: 978-3-527-83158-6 ePub ISBN: 978-3-527-83159-3

4 Dedication To My Wife Roza With the Deepest Feeling of Gratitude for Her Life-Long Love, Support, and Assistance

5 Preface

6 Introduction

7 1 General Impact of Translational Symmetry in Crystals on Solid State Physics 1.1 Crystal Symmetry in Real Space 1.2 Symmetry and Physical Properties in Crystals 1.3 Wave Propagation in Periodic Media and Construction of Reciprocal Lattice 1.A Symmetry Constraints on Rotation Axes 1.B Twinning in Crystals

8 2 Electron Waves in Crystals 2.1 Electron Behavior in a Periodic Potential and Energy Gap Formation 2.2 The Brillouin Zone 2.3 Band Structure 2.4 Graphene 2.5 Fermi Surface 2.A Cyclotron Resonance and Related Phenomena

9 3 Elastic Wave Propagation in Periodic Media, Phonons, and Thermal Properties of Crystals 3.1 Linear Chain of the Periodically Positioned Atoms 3.2 Phonons and Heat Capacity 3.3 Thermal Vibrations of Atoms in Crystals 3.4 Crystal Melting 3.5 X-ray and Neutron Interaction with Phonons 3.6 Lattice Anharmonicity 3.7 Velocities of Bulk Acoustic Waves 3.8 Surface Acoustic Waves 3.A Bose's Derivation of the Planck Distribution Function

10 4 Electrical Conductivity in Metals 4.1 Classical Drude Theory 4.2 Quantum–Mechanical Approach 4.3 Phonon Contribution to Electrical Resistivity 4.4 Defects' Contributions to Metal Resistivity 4.A Derivation of the Fermi-Dirac Distribution Function

11 5 Electron Contribution to Thermal Properties of Crystals 5.1 Electronic Specific Heat 5.2 Electronic Heat Conductivity and the Wiedemann–Franz Law 5.3 Thermoelectric Phenomena 5.4 Thermoelectric Materials

12 6 Electrical Conductivity in Semiconductors 6.1 Intrinsic (Undoped) Semiconductors 6.2 Extrinsic (Doped) Semiconductors 6.3 p–n Junction 6.4 Semiconductor Transistors 6.A Estimation of Exciton's Radius and Binding Energy

13 7 Work Function and Related Phenomena 7.1 Work Function of Metals 7.2 Photoelectric Effect 7.3 Thermionic Emission 7.4 Metal-Semiconductor Junction 7.A Image Charge Method 7.B A Free Electron Cannot Absorb a Photon

14 8 Light Interaction with Metals and Dielectrics 8.1 Skin Effect in Metals 8.2 Light Reflection from a Metal 8.3 Plasma Frequency 8.4 Introduction to Metamaterials 8.5 Structural Colors 8.A Acoustic Metamaterials

15 9 Light Interaction with Semiconductors 9.1 Solar Cells 9.2 Solid State Radiation Detectors 9.3 Charge-Coupled Devices (CCDs) 9.4 Light-Emitting Diodes (LEDs) 9.5 Semiconductor Lasers 9.6 Photonic Materials

16 10 Cooperative Phenomena in Electron Systems: Superconductivity 10.1 Phonon-Mediated Cooper Pairing Mechanism 10.2 Direct Measurements of the Superconductor Energy Gap 10.3 Josephson Effect 10.4 Meissner Effect 10.5 SQUID 10.6 High-Temperature Superconductivity 10.A Fourier Transform of the Coulomb Potential 10.B The Josephson Effect Theory 10.C Derivation of the Critical Magnetic Field in Type I Superconductors

17 11 Cooperative Phenomena in Electron Systems: Ferromagnetism 11.1 Paramagnetism and Ferromagnetism 11.2 The Ising Model 11.3 Magnetic Structures 11.4 Magnetic Domains 11.5 Magnetic Materials 11.6 Giant Magnetoresistance 11.A The Elementary Magnetic Moment of an Electron Produced by its Orbital Movement 11.B Pauli Paramagnetism 11.C Magnetic Domain Walls

18 12 Ferroelectricity as a Cooperative Phenomenon 12.1 The Theory of Ferroelectric Phase Transition 12.2 Ferroelectric Domains 12.3 The Piezoelectric Effect and Its Application in Ferroelectric Devices 12.4 Other Application Fields of Ferroelectrics

19 13 Other Examples of Cooperative Phenomena in Electron Systems 13.1 The Mott Metal–Insulator Transition 13.2 Classical and Quantum Hall Effects 13.3 Topological Insulators 13.A Electron Energies and Orbit Radii in the Simplified Bohr Model of a Hydrogen-like Atom

20 Further Reading

21 List of Prominent Scientists Mentioned in the Book

22 Index

23 End User License Agreement

List of Tables

1 Chapter 1 Table 1.1 Summary of possible symmetries in regular crystals. Table 1.2 Possible types of rotation axes permitted by translational symmetry...

2 Chapter 4Table 4.1 Specific electrical resistivity of selected metals.Table 4.2 Defects' contribution to electrical resistivity of Al.

3 Chapter 5Table 5.1 Fermienergies for selected metals.Table 5.2 Thermal conductivity in the selected metals.

4 Chapter 6Table 6.1 Bandgaps in the selected semiconductors.

5 Chapter 7Table 7.1 The values of work function in selected metals.

6 Chapter 10Table 10.1 Critical temperatures ( T cin Kelvins) and critical magnetic fields...

7 Chapter 11Table 11.1 Magnetic characteristics of the selected permanent magnets.

8 Chapter 12Table 12.1 Piezoelectric moduli d ik(in pC/N) for selected materials.Table 12.2 Band gaps for selected ferroelectrics.

List of Illustrations

1 Chapter 1 Figure 1.1 High-resolution scanning transmission electron microscopy image o... Figure 1.2 Structural motifs in silicon dioxide (SiO 2): (a) – ordered atomic... Figure 1.3 Dense filling of 2D space by spatially ordered, though non-period... Figure 1.4 Dense filling of 2D space by regular geometrical figures. Figure 1.5 Dodecahedron sculpted by 12 pentagonal faces. Figure 1.6 Icosahedron sculpted by 20 triangular faces. Figure 1.7 Regular pentagon with edges equal a pand diagonals equal d p. The ... Figure 1.8 Unit cells of the following side-centered Bravaislattices: A-typ... Figure 1.9 Unit cells of the following centered Bravaislattices: (a) face-c... Figure 1.10 Lattice translations (red arrows) in the rhombohedral setting of... Figure 1.11 The presence of inversion center ( C) in diamond structure (a) an... Figure 1.12 Illustration of the Biot–Savartlaw (Eq. (1.7)). Figure 1.13 Illustration of the wave scattering in a periodic medium. Figure 1.14 Sketch of a crystal plane, normal to the vector of reciprocal la... Figure 1.15 Graphical interrelation between wavevectors of the incident ( k i)... Figure 1.16 The traces of isoenergetic surfaces (red curves) in reciprocal s... Figure 1.17 Illustration of the restrictions imposed by translational symmet... Figure 1.18 Illustration of the simultaneous appearance of several high-orde... Figure 1.19 Illustration of twin formation in monoclinic lattice via mirror ... Figure 1.20 Illustration of twin formation in orthorhombic lattice via mirro...

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Introduction to Solid State Physics for Materials Engineers»

Представляем Вашему вниманию похожие книги на «Introduction to Solid State Physics for Materials Engineers» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Introduction to Solid State Physics for Materials Engineers»

Обсуждение, отзывы о книге «Introduction to Solid State Physics for Materials Engineers» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x