Emil Zolotoyabko - Introduction to Solid State Physics for Materials Engineers

Здесь есть возможность читать онлайн «Emil Zolotoyabko - Introduction to Solid State Physics for Materials Engineers» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Introduction to Solid State Physics for Materials Engineers: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Introduction to Solid State Physics for Materials Engineers»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A concise, accessible, and up-to-date introduction to solid state physics  Solid state physics is the foundation of many of today’s technologies, including transistors, LEDs, optoelectronics, and communications.   offers a guide to basic concepts and provides an accessible framework for understanding this highly application-relevant subject for materials engineers. The text links the fundamentals of modern materials, such as graphene and photonic materials, and of applications, such as high-temperature superconductors and MOSFETs. Written by a noted expert and experienced instructor, the book contains numerous worked examples throughout to help the reader gain a thorough understanding of the concepts and information presented. 
The text covers a wide range of relevant topics, including electron waves in crystals, electrical conductivity in semiconductors, light interaction with metals and dielectrics, light interaction with semiconductors, cooperative phenomena in electron systems, cooperative phenomena in electron systems, ferroelectricity as a cooperative phenomenon, and more. This important book: 
Provides a big picture view of solid state physics Contains examples of basic concepts and applications Offers a highly accessible text that fosters real understanding Presents a wealth of helpful worked examples Written for students of materials science, engineering, and physics, 
 is an important guide to help foster an understanding of solid state physics.

Introduction to Solid State Physics for Materials Engineers — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Introduction to Solid State Physics for Materials Engineers», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

In the absence of the long-range translational symmetry, however, as in quasicrystals, one can find additional rotation axes, e.g. fivefold ( картинка 17= 72°), as for 2D construction shown in Figure 1.3or for icosahedral symmetry in 3D. The latter can be found in two Platonicbodies: regular icosahedrons and dodecahedrons. Regular dodecahedron has 12 pentagonal faces and 20 vertices, in each of them three faces meet ( Figure 1.5). Therefore, the fivefold axes are normal to the pentagonal faces. In contrast, regular icosahedron has 20 triangular faces and 12 vertices, in each of them five faces meet ( Figure 1.6). Therefore, the fivefold axes connect the body center and each vertex. Note that regular pentagon (plane figure) has central angle 72° and is characterized by the so-called golden ratio τ (the ratio between the pentagon diagonal, d p, and pentagon edge, a p, see Figure 1.7):

(1.6) Figure 15Dodecahedron sculpted by 12 pentagonal faces - фото 18

Figure 15Dodecahedron sculpted by 12 pentagonal faces Figure 16Icosahedron - фото 19

Figure 1.5Dodecahedron sculpted by 12 pentagonal faces.

Figure 16Icosahedron sculpted by 20 triangular faces Figure 17Regular - фото 20

Figure 1.6Icosahedron sculpted by 20 triangular faces.

Figure 17Regular pentagon with edges equal a pand diagonals equal d p The - фото 21

Figure 1.7Regular pentagon with edges equal a pand diagonals equal d p. The ratio, is called the golden ratio Eq 16 which is of great importance to the - фото 22, is called the golden ratio ( Eq. (1.6)).

which is of great importance to the quasicrystal diffraction conditions (described later in this chapter).

Permitted combinations of local symmetry elements (totally 32 in regular crystals) are called point groups. A set of different crystals, possessing the same point group symmetry, form certain crystal class. Point group symmetry is responsible for anisotropy of physical properties in crystals, as explained in more detail further in this chapter.

Figure 18Unit cells of the following sidecentered Bravaislattices Atype - фото 23

Figure 1.8Unit cells of the following side-centered Bravaislattices: A-type (a), B-type (b), C-type (c). Translation vectors, a 1, a 2, a 3, are indicated by dashed arrows.

Figure 19Unit cells of the following centered Bravaislattices a - фото 24

Figure 1.9Unit cells of the following centered Bravaislattices: (a) face-centered (F-type) and (b) body-centered (I-type). Translation vectors, a 1, a 2, a 3, are indicated by dashed arrows.

Bravaislattices defined by Eq. (1.1)are primitive (P) since they effectively contain only one atom per unit cell. However, in some symmetry systems, the same local symmetry will be held for centered Bravaislattices, in which the symmetry-related equivalent points are not only the corners (vertices) of the unit cell (as for primitive lattice), but also the centers of the unit cell faces or the geometrical center of the unit cell itself ( Figures 1.8and 1.9). Such lattices are conventionally called side-centered (A, B, or C), face-centered (F), and body-centered (I). In side-centered modifications of the type A, B, or C, additional equivalent points are in the centers of two opposite faces, being perpendicular, respectively, to the a 1-, a 2-, or a 3- translation vectors ( Figure 1.8). In the face-centered modification, F, all faces of the Bravaisparallelepiped (unit cell) are centered ( Figure 1.9). For the cubic symmetry system, the F-centered Bravaislattice is called face-centered cubic (fcc). In the body-centered modification, I, the center of the unit cell is symmetry-equivalent to the unit cell vertices ( Figure 1.9). For the cubic symmetry system, the I-modification of the Bravaislattice is called body-centered cubic (bcc). Accounting of centered Bravaislattices increases their total amount up to 14.

In some cases, the choice of Bravaislattice is not unique. For example, fcc lattice can be represented as rhombohedral one with a R= a / картинка 25and α = 60° ( Figure 1.10a). Rhombohedral lattice is a primitive one and comprises one atom per unit cell instead four atoms in the fcc unit cell. Similarly, bcc lattice can be represented in the rhombohedral setting with a R= a картинка 26/2 and α = 109.47° ( Figure 1.10b). In this case, the rhombohedral lattice comprises one atom per unit cell instead two atoms in the bcc unit cell. We will widely use these settings in Chapter 2considering the shapes of Brillouinzones. Minimizing number of atoms in the unit cell substantially reduces the calculation complexity of different physical properties in crystals.

Figure 110Lattice translations red arrows in the rhombohedral setting of the - фото 27

Figure 1.10Lattice translations (red arrows) in the rhombohedral setting of the fcc (a) and bcc (b) lattices.

Table 1.1Summary of possible symmetries in regular crystals.

Crystal symmetry Bravais lattice type Crystal classes (point groups)
Triclinic P 1 , картинка 28
Monoclinic P; B, or C m , 2, 2/ m
Orthorhombic P; A, B, or C; I; F mm 2, 222, mmm
Tetragonal P; I 4, 422, картинка 29, картинка 30, 4/ m , 4 mm , 4/ mmm
Cubic P; I (bcc); F (fcc) 23, картинка 31, 432, картинка 32, картинка 33
Rhombohedral (trigonal) P ( R ) 3, 32, 3 m , картинка 34, картинка 35
Hexagonal P 6, 622, картинка 36, картинка 37, 6/ m , 6 mm , 6/ mmm

Symmetry systems, types of Bravaislattices, and distribution of crystal classes (point groups) among them are summarized in Table 1.1.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Introduction to Solid State Physics for Materials Engineers»

Представляем Вашему вниманию похожие книги на «Introduction to Solid State Physics for Materials Engineers» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Introduction to Solid State Physics for Materials Engineers»

Обсуждение, отзывы о книге «Introduction to Solid State Physics for Materials Engineers» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x