Emil Zolotoyabko - Introduction to Solid State Physics for Materials Engineers

Здесь есть возможность читать онлайн «Emil Zolotoyabko - Introduction to Solid State Physics for Materials Engineers» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Introduction to Solid State Physics for Materials Engineers: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Introduction to Solid State Physics for Materials Engineers»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A concise, accessible, and up-to-date introduction to solid state physics  Solid state physics is the foundation of many of today’s technologies, including transistors, LEDs, optoelectronics, and communications.   offers a guide to basic concepts and provides an accessible framework for understanding this highly application-relevant subject for materials engineers. The text links the fundamentals of modern materials, such as graphene and photonic materials, and of applications, such as high-temperature superconductors and MOSFETs. Written by a noted expert and experienced instructor, the book contains numerous worked examples throughout to help the reader gain a thorough understanding of the concepts and information presented. 
The text covers a wide range of relevant topics, including electron waves in crystals, electrical conductivity in semiconductors, light interaction with metals and dielectrics, light interaction with semiconductors, cooperative phenomena in electron systems, cooperative phenomena in electron systems, ferroelectricity as a cooperative phenomenon, and more. This important book: 
Provides a big picture view of solid state physics Contains examples of basic concepts and applications Offers a highly accessible text that fosters real understanding Presents a wealth of helpful worked examples Written for students of materials science, engineering, and physics, 
 is an important guide to help foster an understanding of solid state physics.

Introduction to Solid State Physics for Materials Engineers — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Introduction to Solid State Physics for Materials Engineers», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

where ris the radius-vector connecting the element Δland the observation point (see Figure 1.12). In turn, magnetic dipole moment, μ d, is defined as an integral over the volume containing the current density distribution J:

(1.8) Axial vectors are considered when analyzing magnetic symmetry and magnetic - фото 46

Axial vectors are considered when analyzing magnetic symmetry and magnetic symmetry groups ( Chapter 11).

Tensor of rank 2 has two independent indices i , k = 1, 2, 3. As a rule, it linearly connects two vectors, e.g. the vectors of the electric displacement field, D i, and external electric field, ℰ k, i.e. Introduction to Solid State Physics for Materials Engineers - изображение 47, as tensor of dielectric permittivity, ε ik, does (see Chapter 8). Another example is the density of electric current, J i, and electric field, ℰ k, connected by the electrical conductivity tensor ρ ik, i.e. Introduction to Solid State Physics for Materials Engineers - изображение 48(see Chapter 4). In further analyses, we will omit the summation symbols and use the reduced record (according to the Einsteinconvention) for tensor relationships, e.g.

(1.9) Introduction to Solid State Physics for Materials Engineers - изображение 49

(1.10) картинка 50

There are two important field tensors of second rank, which are in common use. These are the stress and strain tensors. Stress tensor, σ ik, connects vector of external force, F i, applied to a certain crystal area, Δ S , and unit vector, Introduction to Solid State Physics for Materials Engineers - изображение 51, normal to this area:

(1.11) Introduction to Solid State Physics for Materials Engineers - изображение 52

Based on the mechanical equilibrium of the stressed solid, it is possible to prove that stress tensor ( Eq. (1.11)) is symmetric one, i.e. σ ik= σ ki. Regarding strain tensor, it connects the deformation vector, u i, in the vicinity of a given point and the radius-vector of this point, x i. Deformation vector determines the difference in the distances between closely located points near x iin the deformed and non-deformed states of the crystal. To provide local information on the deformed state, strain tensor, e ik, is defined in the differential form:

(1.12) Evidently the strain tensor defined by Eq 112 is symmetric one ie e - фото 53

Evidently, the strain tensor, defined by Eq. (1.12), is symmetric one, i.e. e ik= e ki.

Furthermore, inter-atomic distances within a crystal are also changed upon heating (see Chapter 3). In that sense, a crystal heated up to some temperature, T 1, is in different “deformation” state as compared with its initial state at temperature, T 0. Thus produced relative change in lattice parameters is mathematically equivalent to strain ( Eq. (1.12)). Tensor of second rank, which relates e ikto the temperature increase, Δ T = T 1− T 0(tensor of rank zero, i.e. scalar), is called as tensor of linear expansion coefficients, α ik:

(1.13) Introduction to Solid State Physics for Materials Engineers - изображение 54

Note that both crystal states, at T = T 0and T = T 1,are thermodynamically equilibrium states at respective temperatures, and, therefore, no elastic energy is stored in such “deformed crystal,” whenever the temperature change is homogeneous across the crystal. The only energy difference between these two states is in free energy, which is temperature dependent.

Tensor of second rank may also connect a scalar and two vectors, as tensor of dielectric permittivity, ℰ ik, does for energy density, W e, of electromagnetic field within a crystal:

(1.14) By using tensor representation for the electric displacement field see Eq - фото 55

By using tensor representation for the electric displacement field (see Eq. (1.9)), we find that the energy density is quadratic with respect to the applied electric field, ℰ i.

Tensor of third rank has three indices i, k, l = 1, 2, 3. It connects tensor of second rank and vector, e.g. stress, σ ik, and induced electric polarization, P i:

(1.15) Introduction to Solid State Physics for Materials Engineers - изображение 56

as for direct piezoelectric effect, or strain, e ik, and applied electric field, ℰ i:

(1.16) Introduction to Solid State Physics for Materials Engineers - изображение 57

for converse piezoelectric effect, both discussed in detail in Chapter 12. Another example is tensor, r lik, of the linear electro-optic effect (the Pockelseffect, also mentioned in Chapter 12). This tensor of third rank connects the change, Δ n ik, of refractive index, n , (which can be described in terms of the second rank tensor) under applied electric field, with the electric field vector, ℰ l:

(1.17) Introduction to Solid State Physics for Materials Engineers - изображение 58

For the fourth rank tensor, there are several optional ways for its construction. It may connect two tensors of rank 2, e.g. stress, σ ik, and strain, e lm, as the stiffness tensor, C iklm(tensor of elastic modules used in Chapter 3), does:

(1.18) Introduction to Solid State Physics for Materials Engineers - изображение 59

Similar tensor object, π iklm, is used to describe the photo-elastic effect in crystals, which provides the change of refractive index under applied stress:

(1.19) Another possibility is to connect tensor of second rank eg strain tensor e - фото 60

Another possibility is to connect tensor of second rank (e.g. strain tensor, e ik) and two vectors (e.g. quadratic form of electric field, ℰ lℰ m) as for electrostriction effect, g iklm:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Introduction to Solid State Physics for Materials Engineers»

Представляем Вашему вниманию похожие книги на «Introduction to Solid State Physics for Materials Engineers» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Introduction to Solid State Physics for Materials Engineers»

Обсуждение, отзывы о книге «Introduction to Solid State Physics for Materials Engineers» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x