Emil Zolotoyabko - Introduction to Solid State Physics for Materials Engineers

Здесь есть возможность читать онлайн «Emil Zolotoyabko - Introduction to Solid State Physics for Materials Engineers» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Introduction to Solid State Physics for Materials Engineers: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Introduction to Solid State Physics for Materials Engineers»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A concise, accessible, and up-to-date introduction to solid state physics  Solid state physics is the foundation of many of today’s technologies, including transistors, LEDs, optoelectronics, and communications.   offers a guide to basic concepts and provides an accessible framework for understanding this highly application-relevant subject for materials engineers. The text links the fundamentals of modern materials, such as graphene and photonic materials, and of applications, such as high-temperature superconductors and MOSFETs. Written by a noted expert and experienced instructor, the book contains numerous worked examples throughout to help the reader gain a thorough understanding of the concepts and information presented. 
The text covers a wide range of relevant topics, including electron waves in crystals, electrical conductivity in semiconductors, light interaction with metals and dielectrics, light interaction with semiconductors, cooperative phenomena in electron systems, cooperative phenomena in electron systems, ferroelectricity as a cooperative phenomenon, and more. This important book: 
Provides a big picture view of solid state physics Contains examples of basic concepts and applications Offers a highly accessible text that fosters real understanding Presents a wealth of helpful worked examples Written for students of materials science, engineering, and physics, 
 is an important guide to help foster an understanding of solid state physics.

Introduction to Solid State Physics for Materials Engineers — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Introduction to Solid State Physics for Materials Engineers», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Figure 116The traces of isoenergetic surfaces red curves in reciprocal space - фото 87

Figure 1.16The traces of isoenergetic surfaces (red curves) in reciprocal space for the incident ( k i) and diffracted ( k f) waves. The point of degeneracy of quantum states is marked by the letter D.

where G 0is some constant and are unit vectors expressed via the golden ratio Eq 16 as - фото 88are unit vectors expressed via the golden ratio ( Eq. (1.6)), as:

Introduction to Solid State Physics for Materials Engineers - фото 89 Introduction to Solid State Physics for Materials Engineers - фото 90 142 - фото 91 142 Using this terminology regular crystals constitut - фото 92 142 Using this terminology regular crystals constitute the largest class - фото 93

(1.42) Using this terminology regular crystals constitute the largest class for - фото 94

Using this terminology, regular crystals constitute the largest class, for which n = 3 (see Eq. (1.36)).

Considering the latter, we stress that in an infinite periodic medium, the waves having wavevectors k iand k f= k i+ 2 πG are identical from quantum-mechanical point of view that leads to the degeneracy of the corresponding quantum states. The degeneracy point (marked by letter D in Figure 1.16) is located at the intersection of the iso-energetic surfaces (red lines in Figure 1.16) for the incident ( k i) and diffracted ( k f) waves. Being projected onto vector Gin reciprocal space, this point called as the Brillouinzone boundary is in the middle between the 0and G-nodes of the reciprocal lattice ( Figure 1.16). Construction based on lines and surfaces normally cutting corresponding vectors of reciprocal lattices in their middles is used to build Brillouinzones in two and three dimensions (see Chapter 2). As we also will see in Chapter 2, the degeneracy of states at the Brillouinzone boundary is removed by an interaction of electron waves with periodic lattice potential that results in the formation of the forbidden energy zones (gaps). Within these gaps, the electron states do not exist. Therefore, we can say that energy gaps in crystals are formed due to diffraction of free (or almost free) valence electrons, having wavevectors comparable with vectors of reciprocal lattice.

Figure 117Illustration of the restrictions imposed by translational symmetry - фото 95

Figure 1.17Illustration of the restrictions imposed by translational symmetry on permitted types of rotation axes in crystals.

1.A Symmetry Constraints on Rotation Axes

As was already mentioned, translational symmetry imposes tight constraints on possible kinds of rotation axes in crystals. This is one of the strongest and most important results in crystallography. In fact, let us consider the network of equivalent points in space, which are related to each other by translational symmetry (i.e. are produced from some origin by linear combinations of translation vectors, see Eq. (1.1)). Suppose that the rotation axis, which is characterized by the elementary rotation angle φ , crosses one of these points (say point A), perpendicularly to the plane of drawing ( Figure 1.17). Point B is shifted from point A by translation vector a, the distance AB being equal to the translation length, a . Since point B belongs to the same network, the identical rotation axis is passing also through it. Let rotate point B by angle φ about the axis passing through point A. In such a way, we receive third equivalent point B′. Repeating this procedure for point A (i.e. rotating it by angle φ about the axis passing through point B), we obtain fourth equivalent point A′. Being equivalent, all four points belong to the same network. It means that the distance A′B′ should be an integer number of translations, a (since vector AB′ is parallel to vector AB = a), i.e. A′B′ = pa , where p is an integer. On the other hand, by considering the geometry in Figure 1.17, one finds that A′B′ = AB + 2AB′ · sin ( φ −90°). Using AB = AB′ = a yields pa = a + 2 sin( φ −90°), and finally:

(1.A.1) Introduction to Solid State Physics for Materials Engineers - изображение 96

Restrictions imposed on possible types of rotation axes by Eq. (1.A.1), mathematically follow from two conditions: |cos φ | ≤ 1 and integer numbers of p . Possible values of cos φ and p , as well as the order of the axis, n = 360°/ φ , are given in Table 1.2.

First numerical line in Table 1.2contains trivial symmetry element, i.e. rotation axis 1 ( n = 1, φ = 360°). It is trivial since each geometrical figure transforms into itself under rotation by 360°. According to Table 1.2, as non-trivial elements, there are only four different rotation axes in crystals, which are compatible with translational symmetry: 2 ( n = 2, φ = 180°), 3 ( n = 3, φ = 120°), 4 ( n = 4, φ = 90°), and 6 ( n = 6, φ = 60°).

As next important question, we ask: how many rotation axes of the same high order ( 3 , 4 , or 6 ) can simultaneously exist in a crystal? To address it, let take one n -fold axis, marked as OA in Figure 1.18, and add to it another axis of this kind (OB) inclined by angle δ . Then, we can rotate the axis OB around OA by the elementary rotation angle, φ = 360°/ n , and produce the third axis, OD. The duplication procedure can be continued. However, all these axes are equivalent and, thus, the angles between them should be equal δ . The latter condition imposes strong restrictions on possible configurations of equivalent rotation axes in crystals and angles between them.

Table 1.2Possible types of rotation axes permitted by translational symmetry.

p cos φ φ картинка 97
−1 1 360° 1
0 ½ 60° 6
1 0 90° 4
2 −½ 120° 3
3 −1 180° 2
Figure 118Illustration of the simultaneous appearance of several highorder - фото 98

Figure 1.18Illustration of the simultaneous appearance of several high-order rotation axes in a crystal.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Introduction to Solid State Physics for Materials Engineers»

Представляем Вашему вниманию похожие книги на «Introduction to Solid State Physics for Materials Engineers» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Introduction to Solid State Physics for Materials Engineers»

Обсуждение, отзывы о книге «Introduction to Solid State Physics for Materials Engineers» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x