Emil Zolotoyabko - Introduction to Solid State Physics for Materials Engineers

Здесь есть возможность читать онлайн «Emil Zolotoyabko - Introduction to Solid State Physics for Materials Engineers» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Introduction to Solid State Physics for Materials Engineers: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Introduction to Solid State Physics for Materials Engineers»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A concise, accessible, and up-to-date introduction to solid state physics  Solid state physics is the foundation of many of today’s technologies, including transistors, LEDs, optoelectronics, and communications.   offers a guide to basic concepts and provides an accessible framework for understanding this highly application-relevant subject for materials engineers. The text links the fundamentals of modern materials, such as graphene and photonic materials, and of applications, such as high-temperature superconductors and MOSFETs. Written by a noted expert and experienced instructor, the book contains numerous worked examples throughout to help the reader gain a thorough understanding of the concepts and information presented. 
The text covers a wide range of relevant topics, including electron waves in crystals, electrical conductivity in semiconductors, light interaction with metals and dielectrics, light interaction with semiconductors, cooperative phenomena in electron systems, cooperative phenomena in electron systems, ferroelectricity as a cooperative phenomenon, and more. This important book: 
Provides a big picture view of solid state physics Contains examples of basic concepts and applications Offers a highly accessible text that fosters real understanding Presents a wealth of helpful worked examples Written for students of materials science, engineering, and physics, 
 is an important guide to help foster an understanding of solid state physics.

Introduction to Solid State Physics for Materials Engineers — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Introduction to Solid State Physics for Materials Engineers», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

and combining Eqs. (1.27, 1.28), we find

(1.29) Introduction to Solid State Physics for Materials Engineers - изображение 72

According to Eqs. (1.28, 1.29), different values of k f= k i+ 2 π Gare permitted in a periodic medium, but only those that provide scalar products of certain vectors, G, with all possible vectors, r s, to be integer numbers, m . By substituting Eq. (1.1)into Eq. (1.29), we finally obtain:

(1.30) In order to find the set of allowed vectors G satisfying Eq 130 the - фото 73

In order to find the set of allowed vectors, G, satisfying Eq. (1.30), the reciprocal space is built, which is based on three non-coplanar vectors b 1, b 2, and b 3. Real (direct) space and reciprocal space are interrelated by the orthogonality (reciprocity) conditions:

(1.31) картинка 74

where δ ijis the Kroneckersymbol, equal to 1 for i = j or 0 for ij ( i , j = 1, 2, 3). To produce the reciprocal space from real space, we use the following mathematical procedure:

(1.32) where V cstands for the volume of the parallelepiped unit cell built in real - фото 75

where V cstands for the volume of the parallelepiped (unit cell) built in real space on vectors a 1, a 2, a 3:

(1.33) Introduction to Solid State Physics for Materials Engineers - изображение 76

By using Eqs. (1.32, 1.33), it is easy to directly check that the procedure (1.32)provides proper orthogonality conditions (1.31). For example, ab 1= a 1· [ aa 3]/ V c= V c/ V c= 1, whereas a 2 · b 1= a 2 ·[ aa 3]/ V c= 0. Certainly, the volume of the unit cell, V rec, in reciprocal space

(1.34) is inverse to V c To prove this statement we use the relationship wellknown - фото 77

is inverse to V c. To prove this statement, we use the relationship well-known in vector algebra:

(1.35) In the reciprocal space the allowed vectors G are linear combinations of the - фото 78

In the reciprocal space, the allowed vectors, G, are linear combinations of the basis vectors, b 1, b 2, b 3:

(1.36) Introduction to Solid State Physics for Materials Engineers - изображение 79

with integer projections ( hkl ), known as Millerindices. The ends of vectors, G, being constructed from the common origin ( 000 ), produce the nodes of a reciprocal lattice. For all vectors, G, Eq. (1.30)is automatically valid due to the orthogonality conditions (1.31). We repeat that in the medium with translational symmetry, only those wavevectors, k f, may exist, which are in rigid interrelation with the initial wavevector k i, satisfying Eq. (1.28). Sometimes Eq. (1.28)is called as quasi-momentum (or quasi-wavevector) conservation law in the medium with translational symmetry, which should be used instead of the momentum conservation law in a homogeneous medium. We remind that the latter law means 2 π G= k f− k i= 0, i.e. k f= k i.

Note that each vector of reciprocal lattice, G = hb 1 + kb 2 + lb 3, is perpendicular to a specific crystallographic plane in real space. This statement directly follows from Eq. (1.29), which defines the geometric plane for the ends of certain vectors, r s, the plane being perpendicular to the vector G( Figure 1.14). Bearing in mind possible wave diffraction when propagating through a periodic medium, it is worth to introduce a set of parallel planes of this type (i.e. those given by Eq. (1.29)), which are separated by the d -spacing

(1.37) Figure 114Sketch of a crystal plane normal to the vector of reciprocal - фото 80

Figure 114Sketch of a crystal plane normal to the vector of reciprocal - фото 81

Figure 1.14Sketch of a crystal plane, normal to the vector of reciprocal lattice, G, which contains the ends of vectors, r s, satisfying Eq. (1.29).

Figure 115Graphical interrelation between wavevectors of the incident k i - фото 82

Figure 1.15Graphical interrelation between wavevectors of the incident ( k i) and scattered ( k f) waves and the vector of reciprocal lattice, G.

In fact, using graphical representation of Eq. (1.28)( Figure 1.15) and solving the wavevector triangle, we find (with the aid of Eq. (1.24)) that

(1.38) Introduction to Solid State Physics for Materials Engineers - изображение 83

Substituting Eq. (1.37)into Eq. (1.38), we finally obtain the so-called Bragglaw:

(1.39) Introduction to Solid State Physics for Materials Engineers - изображение 84

which provides the relationship between the possible directions for the diffracted wave propagation (via Braggangles, Θ B) and inter-planar spacings ( d -spacings), d , in crystals. We stress that if λ > 2 d , Braggdiffraction is not possible.

Note that for quasicrystals, the diffraction conditions (like Eq. (1.28)) can be deduced from the quasi-momentum (quasi-wavevector) conservation law in the n -dimensional space (hyperspace, n > 3), in which the vectors of reciprocal lattice, G qc, are:

(1.40) Introduction to Solid State Physics for Materials Engineers - изображение 85

In case of icosahedral symmetry, n = 6, and the set of basis vectors has the following form:

(1.41) Figure 116The traces of isoenergetic surfaces red curves in reciprocal space - фото 86

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Introduction to Solid State Physics for Materials Engineers»

Представляем Вашему вниманию похожие книги на «Introduction to Solid State Physics for Materials Engineers» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Introduction to Solid State Physics for Materials Engineers»

Обсуждение, отзывы о книге «Introduction to Solid State Physics for Materials Engineers» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x