Emil Zolotoyabko - Introduction to Solid State Physics for Materials Engineers

Здесь есть возможность читать онлайн «Emil Zolotoyabko - Introduction to Solid State Physics for Materials Engineers» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Introduction to Solid State Physics for Materials Engineers: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Introduction to Solid State Physics for Materials Engineers»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A concise, accessible, and up-to-date introduction to solid state physics  Solid state physics is the foundation of many of today’s technologies, including transistors, LEDs, optoelectronics, and communications.   offers a guide to basic concepts and provides an accessible framework for understanding this highly application-relevant subject for materials engineers. The text links the fundamentals of modern materials, such as graphene and photonic materials, and of applications, such as high-temperature superconductors and MOSFETs. Written by a noted expert and experienced instructor, the book contains numerous worked examples throughout to help the reader gain a thorough understanding of the concepts and information presented. 
The text covers a wide range of relevant topics, including electron waves in crystals, electrical conductivity in semiconductors, light interaction with metals and dielectrics, light interaction with semiconductors, cooperative phenomena in electron systems, cooperative phenomena in electron systems, ferroelectricity as a cooperative phenomenon, and more. This important book: 
Provides a big picture view of solid state physics Contains examples of basic concepts and applications Offers a highly accessible text that fosters real understanding Presents a wealth of helpful worked examples Written for students of materials science, engineering, and physics, 
 is an important guide to help foster an understanding of solid state physics.

Introduction to Solid State Physics for Materials Engineers — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Introduction to Solid State Physics for Materials Engineers», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(1.20) Introduction to Solid State Physics for Materials Engineers - изображение 61

or changes in refractive index, as a function of quadratic form of electric filed, as for quadratic electro-optic effect, r iklm(see Chapter 12):

(1.21) Eqs 120 121describe the second order quadratic effects in the induced - фото 62

Eqs. (1.20, 1.21)describe the second order (quadratic) effects in the induced strain and change of refractive index, respectively, as a result of electric field application to a crystal. Tensor of rank 4 may also interconnect scalar quantity with two tensors of the second rank, as the stiffness tensor does when one calculates the density of elastic energy, W el, stored within a crystal:

(1.22) Therefore using tensor representation of applied stress via induced strain - фото 63

Therefore, using tensor representation of applied stress via induced strain ( Eq. (1.18)), we find the density of elastic energy to be quadratic with respect to the induced strain. Tensors of rank higher than 4 describe high-order effects in the interaction between external fields and materials. These effects are regularly weak and, hence, are not discussed here.

Tensors of different ranks are appropriately transformed under local symmetry operations. All these operations can be exemplified as certain rotations of coordinate system, in which tensors are defined. Transformed tensor forms are compared with the initial ones, and, on this basis, symmetry restrictions on physical properties are imposed, to be in accordance with Neumann's principle. Based on this comparison, the zero tensor components can be determined, as well as symmetry-mediated relationships between non-zero tensor components. More information on symmetry aspects in crystals can be found in the dedicated crystallography books.

Additional interesting and important physical phenomenon, also related to symmetry operations, is twinning in crystals. For example, it stands behind the crystallography of ferroelectric domains (see Chapter 12) and is one of the channels of plastic deformation in crystals being competitive with dislocation glide. We stress that in terms of crystallography, twinning always is the result of symmetry operations, but those not belonging to the point group of a specific crystal. More information about twinning in crystals is given in Appendix 1.B.

1.3 Wave Propagation in Periodic Media and Construction of Reciprocal Lattice

With no doubts, leading crystal symmetry is translational symmetry, which is of great importance to the foundations of solid state physics. In particular, it allows us to deeply understand the essential features of wave propagation in periodic media, which influence a majority of physical phenomena in crystals. We start now with the symmetry-based analysis of wave propagation following the ideas of Leon Brillouin.

Let us consider, first, the propagation of the plane electron wave, Y = Y 0exp[ i ( krωt )], in a homogeneous medium. Here, Y 0is the wave amplitude, kis the wavevector, and ω is the wave angular frequency, whereas rand t are the spatial and temporal coordinates. The phase of plane wave is ϕ = ( krωt ), i.e. Y = Y 0exp( ). According to the Emmy Noethertheorem, the homogeneity of space leads to the momentum conservation law. It means that an electron wave having wavevector, k i, at a certain point in its trajectory, will continue to propagate with the same wavevector since the wavevector, k, is linearly related to the momentum, P, via the reduced Planckconstant , i.e. P = ℏ k. The latter relationship follows from the de Brogliedefinition of the particle wavelength ( de Brogliewavelength) via its momentum: Introduction to Solid State Physics for Materials Engineers - изображение 64.

The situation drastically changes for a non-homogeneous medium, in which the momentum conservation law, generally, is not valid because of the breaking of the aforementioned symmetry (homogeneity of space). Consequently, in such a medium, one can find wavevectors, k f, differing from the initial wavevector, k i.

Our focus here is on a non-homogeneous medium with translational symmetry, which comprises scattering centers in specific points, r s, given by Eq. (1.1). Based on the translational symmetry only, we can say that in an infinite medium with no absorption, the magnitude of plane wave, Y , should be the same near each lattice node. It means that the amplitude, Y 0, is the same at all points, r s, whereas the phase, ϕ = krωt , can differ by an integer number m of 2 π .Let us suppose that the plane wave has wavevector, k i, at starting point r 0= 0 and time moment, t 0= 0, and hence ϕ (0) = 0. If so, at point r s, the phase, ϕ ( r s), should be equal:

Figure 113Illustration of the wave scattering in a periodic medium 123 - фото 65

Figure 1.13Illustration of the wave scattering in a periodic medium.

(1.23) Note that the change of the wavevector from k ito k fphysically means that the - фото 66

Note that the change of the wavevector from k ito k fphysically means that the wave experiences scattering in point, r s( Figure 1.13). For elastic scattering (with no energy change):

(1.24) where λ is the electron wavelength Furthermore the time interval t for - фото 67

where λ is the electron wavelength. Furthermore, the time interval, t , for wave propagation between points, r 0= 0 and r s, equals

(1.25) Introduction to Solid State Physics for Materials Engineers - изображение 68

where

(1.26) Introduction to Solid State Physics for Materials Engineers - изображение 69

is the phase wave velocity. Substituting Eqs. (1.24— 1.26)into Eq. (1.23)yields:

(1.27) Introduction to Solid State Physics for Materials Engineers - изображение 70

Introducing a new vector, G, which is called vector of reciprocal lattice,

(1.28) Introduction to Solid State Physics for Materials Engineers - изображение 71

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Introduction to Solid State Physics for Materials Engineers»

Представляем Вашему вниманию похожие книги на «Introduction to Solid State Physics for Materials Engineers» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Introduction to Solid State Physics for Materials Engineers»

Обсуждение, отзывы о книге «Introduction to Solid State Physics for Materials Engineers» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x