Algebra and Applications 2

Здесь есть возможность читать онлайн «Algebra and Applications 2» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Algebra and Applications 2: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Algebra and Applications 2»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book is part of <i>Algebra and Geometry</i>, a subject within the SCIENCES collection published by ISTE and Wiley, and the second of three volumes specifically focusing on algebra and its applications. Algebra and Applications 2 centers on the increasing role played by combinatorial algebra and Hopf algebras, including an overview of the basic theories on non-associative algebras, operads and (combinatorial) Hopf algebras.<br /><br />The chapters are written by recognized experts in the field, providing insight into new trends, as well as a comprehensive introduction to the theory. The book incorporates self-contained surveys with the main results, applications and perspectives. The chapters in this volume cover a wide variety of algebraic structures and their related topics. Alongside the focal topic of combinatorial algebra and Hopf algebras, non-associative algebraic structures in iterated integrals, chronological calculus, differential equations, numerical methods, control theory, non-commutative symmetric functions, Lie series, descent algebras, Butcher groups, chronological algebras, Magnus expansions and Rota–Baxter algebras are explored.<br /><br /><i>Algebra and Applications 2</i> is of great interest to graduate students and researchers. Each chapter combines some of the features of both a graduate level textbook and of research level surveys.

Algebra and Applications 2 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Algebra and Applications 2», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

For any Algebra and Applications 2 - изображение 122let [ α, β ] = α * ββ * α .

PROPOSITION 1.9.– We have the inclusion :

[1.25] Algebra and Applications 2 - изображение 123

and moreover, the metric space endowed with the distance defined by [1.24] is complete .

PROOF.– Take any x ∈ ℋ p+q − 1, and any and We have Recall that we denote by x the minimal - фото 124and We have Recall that we denote by x the minimal n such that x ℋ n - фото 125. We have:

Recall that we denote by x the minimal n such that x ℋ n Since x 1 - фото 126

Recall that we denote by | x | the minimal n , such that x ∈ ℋ n. Since | x 1| + | x 2| = | x | ≤ p + q — 1, either | x 1| ≤ p – 1 or | x 2| ≤ q — 1, so the expression vanishes. Now, if ( ψn ) is a Cauchy sequence in картинка 127, it is seen immediately that this sequence is locally stationary , that is, for any x ∈ ℋ there exists N ( x ) ∈ ℕ, such that ψn ( x ) = ψ N (x)( x ) for any nN ( x ). Then, the limit of ( ψn ) exists and is clearly defined by:

Algebra and Applications 2 - изображение 128

As a corollary, the Lie algebra картинка 129is pro-nilpotent , in a sense that it is the projective limit of the Lie algebras картинка 130, which are nilpotent.

1.3.5. Characters

Let ℋ be a connected filtered Hopf algebra over k , and let A be a k -algebra. We will consider unital algebra morphisms from ℋ to the target algebra картинка 131. When the algebra картинка 132is commutative, we will call them, slightly abusively, characters . We recover, of course, the usual notion of character when the algebra картинка 133is the ground field k .

The notion of character involves only the algebra structure of ℋ. On the contrary, the convolution product on картинка 134involves only the coalgebra structure on ℋ. Let us now consider the full Hopf algebra structure on ℋ and see what happens to algebra morphisms with the convolution product:

PROPOSITION 1.10.– Letbe any Hopf algebra over k, and let be a commutative k-algebra. Then, the characters fromto form a group under the convolution product, and for any , the inverse is given by :

[1.26] PROOF Using the fact that Δ is an algebra morphism we have for any x y ℋ - фото 135

PROOF.– Using the fact that Δ is an algebra morphism, we have for any x, y ∈ ℋ:

If is commutative and if f and g are characters we get - фото 136

If is commutative and if f and g are characters we get The unit - фото 137is commutative and if f and g are characters, we get:

The unit is an algebra morphism The formula for the inverse of a character - фото 138

The unit is an algebra morphism The formula for the inverse of a character comes easily - фото 139is an algebra morphism. The formula for the inverse of a character comes easily from the commutativity of the following diagram:

We call infinitesimal characters with values in the algebra those elements α of - фото 140

We call infinitesimal characters with values in the algebra those elements α of such that PROPOSITION 111 Let ℋ be a connected filtered Hopf algebra - фото 141, such that:

PROPOSITION 111 Let ℋ be a connected filtered Hopf algebra and suppose that - фото 142

PROPOSITION 1.11.– Letbe a connected filtered Hopf algebra, and suppose that is a commutative algebra. Let (respectively ) be the set of characters ofwith values in (respectively the set of infinitesimal characters ofwith values in ). Then, is a subgroup of G, the exponential restricts to a bijection from onto , and is a Lie subalgebra of .

PROOF.– Take two infinitesimal characters α and β with values in and compute Using the commutativity of we immediately get - фото 143and compute:

Using the commutativity of we immediately get which shows t - фото 144

Using the commutativity of we immediately get which shows that is a Lie algebra Now for - фото 145, we immediately get:

which shows that is a Lie algebra Now for we have - фото 146

which shows that is a Lie algebra Now for we have as easily seen by induction on - фото 147is a Lie algebra. Now, for we have as easily seen by induction on n A straightforward computation - фото 148, we have:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Algebra and Applications 2»

Представляем Вашему вниманию похожие книги на «Algebra and Applications 2» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Algebra and Applications 2»

Обсуждение, отзывы о книге «Algebra and Applications 2» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x