Algebra and Applications 2

Здесь есть возможность читать онлайн «Algebra and Applications 2» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Algebra and Applications 2: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Algebra and Applications 2»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book is part of <i>Algebra and Geometry</i>, a subject within the SCIENCES collection published by ISTE and Wiley, and the second of three volumes specifically focusing on algebra and its applications. Algebra and Applications 2 centers on the increasing role played by combinatorial algebra and Hopf algebras, including an overview of the basic theories on non-associative algebras, operads and (combinatorial) Hopf algebras.<br /><br />The chapters are written by recognized experts in the field, providing insight into new trends, as well as a comprehensive introduction to the theory. The book incorporates self-contained surveys with the main results, applications and perspectives. The chapters in this volume cover a wide variety of algebraic structures and their related topics. Alongside the focal topic of combinatorial algebra and Hopf algebras, non-associative algebraic structures in iterated integrals, chronological calculus, differential equations, numerical methods, control theory, non-commutative symmetric functions, Lie series, descent algebras, Butcher groups, chronological algebras, Magnus expansions and Rota–Baxter algebras are explored.<br /><br /><i>Algebra and Applications 2</i> is of great interest to graduate students and researchers. Each chapter combines some of the features of both a graduate level textbook and of research level surveys.

Algebra and Applications 2 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Algebra and Applications 2», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

1 1) S ∘ u = u and ε o S = ε.

2 2) S is an algebra antimorphism and a coalgebra antimorphism, that is, if denotes the flip, we have:

3 3) If ℋ is commutative or cocommutative, then S2 = I.

For a detailed proof, see Kassel (1995).

PROPOSITION 1.5.–

1 1) If x is a primitive element, then S(x) = –x.

2 2) The linear subspace Prim ℋ of primitive elements in ℋ is a Lie algebra.

PROOF.– If x is primitive, then ( εε ) ∘ Δ( x ) = 2 ε ( x ). On the contrary, ( εε ) ∘ Δ( x ) = ε ( x ), so ε ( x ) = 0. Then:

Now let x and y be the primitive elements of ℋ Then we can easily compute - фото 53

Now let x and y be the primitive elements of ℋ. Then, we can easily compute:

13 Connected Hopf algebras We introduce the crucial property of - фото 54

1.3. Connected Hopf algebras

We introduce the crucial property of connectedness for bialgebras. The main interest resides in the possibility of implementing recursive procedures in connected bialgebras, the induction taking place with respect to a filtration or a grading. An important example of these techniques is the recursive construction of the antipode, which then “comes for free”, showing that any connected bialgebra is in fact a connected Hopf algebra.

1.3.1. Connected graded bialgebras

A graded Hopf algebra on k is a graded k -vector space:

Algebra and Applications 2 - изображение 55

endowed with a product m : ℋ ⊗ ℋ → ℋ, a coproduct Δ : ℋ ↑ ℋ ⊗ ℋ, a unit u : k → ℋ , a counit ε : ℋ → k and an antipode S : ℋ → ℋ, fulfilling the usual axioms of a Hopf algebra, and such that:

[1.1] Algebra and Applications 2 - изображение 56

[1.2] If we do not ask for the existence of an antipode ℋ we get the definition of a - фото 57

If we do not ask for the existence of an antipode ℋ, we get the definition of a graded bialgebra . In a graded bialgebra ℋ, we will consider the increasing filtration:

Algebra and Applications 2 - изображение 58

It is an easy exercise (left to the reader) to prove that the unit u and the counit ε are degree zero maps, that is, 1∈ ℋ 0and ε (ℋ n) = {0} for n ≥ 1. We can also show that the antipode S , when it exists, is also of degree zero, that is, S (ℋ n ) ⊂ ℋ n. It can be proven as follows: let S ′ : ℋ → ℋ be defined, so that S ’( x ) is the n thhomogeneous component of S ( x ) when x is homogeneous of degree n . We can write down the coproduct Δ( x ) with Sweedler’s notation:

Algebra and Applications 2 - изображение 59

where x 1and x 2are the homogeneous of degree, say, k and n — k . We then have:

[1.3] Similarly m Id S Δ x ε x 1 By uniqueness of the antipode - фото 60

Similarly, m ∘ (Id ⊗ S ′) ∘ Δ( x ) = ε ( x ) 1. By uniqueness of the antipode, we then get S ’ = S .

Suppose that ℋ is connected , that is, ℋ 0is one-dimensional. Then, we have:

Algebra and Applications 2 - изображение 61

PROPOSITION 1.6.– For any x ∈ ℋ n, n ≥ 1, we can write:

The map is coassociative on Ker ε and - фото 62

The map is coassociative on Ker ε and sends ℋ n into ℋ nk k 1 PROOF Thanks - фото 63 is coassociative on Ker ε and sends ℋ n into ℋ nk k 1 PROOF Thanks to connectedness we can clearly - фото 64 sends ℋ n into (ℋ n-k) ⊗k + 1.

PROOF .– Thanks to connectedness we can clearly write:

with ab k and Ker ε Ker ε The counit property then tells us that with - фото 65

with a,bk and Ker ε Ker ε The counit property then tells us that with k ℋ and ℋ k - фото 66∈ Ker ε ⊗ Ker ε . The counit property then tells us that, with k ⊗ ℋ and ℋ ⊗ k canonically identified with ℋ:

[1.4] Algebra and Applications 2 - изображение 67

hence, a = b = 1. We will use the following two variants of Sweedler’s notation:

[1.5] Algebra and Applications 2 - изображение 68

[1.6] Algebra and Applications 2 - изображение 69

the second being relevant only for x ⊗ Ker ε . If x is homogeneous of degree n , we can suppose that the components x 1, x 2, x ′, x ″ in the expressions above are homogeneous as well, and we then have | x 1| + | x 2| = n and | x ′| + | x ″| = n . We easily compute:

and hence the coassociativity of comes from the one of Δ Fi - фото 70

and

hence the coassociativity of comes from the one of Δ Finally it is easily - фото 71

hence, the coassociativity of comes from the one of Δ Finally it is easily seen by induction on k that for - фото 72comes from the one of Δ. Finally, it is easily seen by induction on k that for any x ∈ ℋ n, we can write:

[1.7] Algebra and Applications 2 - изображение 73

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Algebra and Applications 2»

Представляем Вашему вниманию похожие книги на «Algebra and Applications 2» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Algebra and Applications 2»

Обсуждение, отзывы о книге «Algebra and Applications 2» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x