Algebra and Applications 2

Здесь есть возможность читать онлайн «Algebra and Applications 2» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Algebra and Applications 2: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Algebra and Applications 2»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book is part of <i>Algebra and Geometry</i>, a subject within the SCIENCES collection published by ISTE and Wiley, and the second of three volumes specifically focusing on algebra and its applications. Algebra and Applications 2 centers on the increasing role played by combinatorial algebra and Hopf algebras, including an overview of the basic theories on non-associative algebras, operads and (combinatorial) Hopf algebras.<br /><br />The chapters are written by recognized experts in the field, providing insight into new trends, as well as a comprehensive introduction to the theory. The book incorporates self-contained surveys with the main results, applications and perspectives. The chapters in this volume cover a wide variety of algebraic structures and their related topics. Alongside the focal topic of combinatorial algebra and Hopf algebras, non-associative algebraic structures in iterated integrals, chronological calculus, differential equations, numerical methods, control theory, non-commutative symmetric functions, Lie series, descent algebras, Butcher groups, chronological algebras, Magnus expansions and Rota–Baxter algebras are explored.<br /><br /><i>Algebra and Applications 2</i> is of great interest to graduate students and researchers. Each chapter combines some of the features of both a graduate level textbook and of research level surveys.

Algebra and Applications 2 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Algebra and Applications 2», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

1.2.4. Bialgebras and Hopf algebras

A (unital and counital) bialgebra is a vector space ℋ endowed with a structure of unital algebra ( m , ε ) and a structure of counital coalgebra (Δ, ε ), which are compatible. The compatibility requirement is that Δ is an algebra morphism (or equivalently that m is a coalgebra morphism), ε is an algebra morphism and u is a coalgebra morphism. It is expressed by the commutativity of the three following diagrams:

A Hopf algebra is a bialgebra ℋ together with a linear map S ℋ ℋ called - фото 38

A Hopf algebra is a bialgebra ℋ together with a linear map S : ℋ → ℋ, called the antipode , such that the following diagram commutes:

In Sweedlers notation it reads In other words the antipode is an inverse - фото 39

In Sweedler’s notation, it reads:

In other words the antipode is an inverse of the identity I for the - фото 40

In other words, the antipode is an inverse of the identity I for the convolution product on картинка 41. The unit for the convolution is the map uε .

A primitive element in a bialgebra ℋ is an element x , such that Δ x = x ⊗1 + 1⊗ x . A grouplike element is a nonzero element x , such that Δ x = xx . Note that grouplike elements make sense in any coalgebra.

A bi-ideal in a bialgebra ℋ is a two-sided ideal, which is also a two-sided coideal. A Hopf ideal in a Hopf algebra ℋ is a bi-ideal J , such that S ( J ) ⊂ J .

1.2.5. Some simple examples of Hopf algebras

1.2.5.1. The Hopf algebra of a group

Let G be a group, and let kG be the group algebra (over the field k ). It is by definition the vector space freely generated by the elements of G : the product of G extends uniquely to a bilinear map from kG × kG into kG , hence, a multiplication m : kGkGkG , which is associative. The neutral element of G gives the unit for m . The space kG is also endowed with a counital coalgebra structure, given by:

Algebra and Applications 2 - изображение 42

and:

Algebra and Applications 2 - изображение 43

This defines the coalgebra of the set G : it does not take into account the extra group structure on G , as the algebra structure does.

PROPOSITION 1.3.– The vector space kG endowed with the algebra and coalgebra structures defined above is a Hopf algebra. The antipode is given by :

Algebra and Applications 2 - изображение 44

PROOF.– The compatibility of the product and the coproduct is an immediate consequence of the following computation: for any g , hG , we have:

Now m S I Δ g g 1 g e and similarly for m I S Δ g But e - фото 45

Now, m ( SI )Δ( g ) = g -1 g = e and similarly for m ( IS )Δ( g ). But, e = uε ( g ) for any gG , so the map S is indeed the antipode. □

REMARK 1.1.– If G were only a semigroup, the same construction would lead to a bialgebra structure on kG: the Hopf algebra structure (i.e. the existence of an antipode) reflects the group structure (the existence of the inverse). We have S2 = I in this case; however, the involutivity of the antipode is not true for general Hopf algebras .

1.2.5.2. Tensor algebras

There is a natural structure of cocommutative Hopf algebra on the tensor algebra T ( V ) of any vector space V . Namely, we define the coproduct Δ as the unique algebra morphism from T ( V ) into T ( V ) ⊗ T ( V ), such that:

We define the counit as the algebra morphism such that ε 1 1 and This - фото 46

We define the counit as the algebra morphism, such that ε (1) = 1 and This endows T V with a cocommutative bialgebra structure We claim that - фото 47. This endows T ( V ) with a cocommutative bialgebra structure. We claim that the principal anti-automorphism:

verifies the axioms of an antipode so that T V is indeed a Hopf algebra - фото 48

verifies the axioms of an antipode, so that T ( V ) is indeed a Hopf algebra. For xV , we have S ( x ) = – x ; hence, S * I ( x ) = I * S ( x ) = 0. As V generates T ( V ) as an algebra, it is easy to conclude.

1.2.5.3. Enveloping algebras

Let картинка 49be a Lie algebra. The universal enveloping algebra is the quotient of the tensor algebra картинка 50by the ideal J generated by xyyx — [ x , y ], картинка 51.

LEMMA 1.1.– J is a Hopf ideal, that is , Δ( J ) ⊂ ℋ ⊗ J + J ⊗ ℋ and S ( J ) ⊂ J .

PROOF.– The ideal J is generated by primitive elements (according to Proposition 1.5 below), and any ideal generated by primitive elements is a Hopf ideal (very easy and left to the reader). □

The quotient of a Hopf algebra by a Hopf ideal is a Hopf algebra. Hence, the universal enveloping algebra картинка 52is a cocommutative Hopf algebra.

1.2.6. Some basic properties of Hopf algebras

In the proposition below we summarize the main properties of the antipode in a Hopf algebra:

PROPOSITION 1.4.– (see Sweedler (1969, Proposition 4.0.1)). Letbe a Hopf algebra with multiplication m, comultiplication Δ, unit u : 1 ↦ 1, counit ε and antipode S. Then :

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Algebra and Applications 2»

Представляем Вашему вниманию похожие книги на «Algebra and Applications 2» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Algebra and Applications 2»

Обсуждение, отзывы о книге «Algebra and Applications 2» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x