Algebra and Applications 2

Здесь есть возможность читать онлайн «Algebra and Applications 2» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Algebra and Applications 2: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Algebra and Applications 2»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book is part of <i>Algebra and Geometry</i>, a subject within the SCIENCES collection published by ISTE and Wiley, and the second of three volumes specifically focusing on algebra and its applications. Algebra and Applications 2 centers on the increasing role played by combinatorial algebra and Hopf algebras, including an overview of the basic theories on non-associative algebras, operads and (combinatorial) Hopf algebras.<br /><br />The chapters are written by recognized experts in the field, providing insight into new trends, as well as a comprehensive introduction to the theory. The book incorporates self-contained surveys with the main results, applications and perspectives. The chapters in this volume cover a wide variety of algebraic structures and their related topics. Alongside the focal topic of combinatorial algebra and Hopf algebras, non-associative algebraic structures in iterated integrals, chronological calculus, differential equations, numerical methods, control theory, non-commutative symmetric functions, Lie series, descent algebras, Butcher groups, chronological algebras, Magnus expansions and Rota–Baxter algebras are explored.<br /><br /><i>Algebra and Applications 2</i> is of great interest to graduate students and researchers. Each chapter combines some of the features of both a graduate level textbook and of research level surveys.

Algebra and Applications 2 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Algebra and Applications 2», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

1.1. Introduction

Since the pioneering work of Cayley in the 19th century (Cayley 1857), we have known that rooted trees and vector fields on the affine space are closely related. Surprisingly enough, rooted trees were also revealed to be a fundamental tool for studying not only the integral curves of vector fields, but also their Runge–Kutta numerical approximations (Butcher 1963).

The rich algebraic structure of the k -vector space картинка 3spanned by rooted trees (where k is some field of characteristic zero) can be, in a nutshell, described as follows: картинка 4is both the free pre-Lie algebra with one generator and the free non-associative permutative algebra with one generator (Chapoton and Livernet 2001; Dzhumadil’daev and Löfwall 2002), and moreover, there are two other pre-Lie structures on картинка 5, of operadic nature, which show strong compatibility with the first pre-Lie (respectively the NAP) structure (Chapoton and Livernet 2001; Calaque et al . 2011; Manchon and Saidi 2011). The Hopf algebra of coordinates on the Butcher group (Butcher 1963), that is, the graded dual of the enveloping algebra картинка 6(with respect to the Lie bracket given by the first pre-Lie structure), was first investigated in Dür (1986), and intensively studied by Kreimer for renormalization purposes in Quantum Field Theory (Connes and Kreimer 1998; Kreimer 2002), see also Brouder (2000).

This chapter is organized as follows: the first section is devoted to general connected graded or filtered Hopf algebras, including the renormalization of their characters. The second section gives a short presentation of operads in the symmetric monoidal category of vector spaces, and the third section will treat pre-Lie algebras in some detail: in particular, we will give a “pedestrian” proof of the Chapoton-Livernet theorem on free pre-Lie algebras. In the last section, Rota-Baxter, dendriform and NAP algebras will be introduced.

1.2. Hopf algebras: general properties

We choose a base field k of characteristic zero. Most of the material here is borrowed from Manchon (2008), to which we can refer for more details.

1.2.1. Algebras

A k -algebra is by definition a k -vector space A together with a bilinear map m : AAA which is associative . The associativity is expressed by the commutativity of the following diagram:

The algebra A is unital if there is a unit 1in it This is expressed by the - фото 7

The algebra A is unital if there is a unit 1in it. This is expressed by the commutativity of the following diagram:

where u is the map from k to A defined by u λ λ 1 The algebra A is - фото 8

where u is the map from k to A defined by u (λ) = λ 1. The algebra A is commutative if картинка 9, where Algebra and Applications 2 - изображение 10: AAAA is the flip , defined by Algebra and Applications 2 - изображение 11.

A subspace JA is called a subalgebra (respectively a left ideal, right ideal and two-sided ideal ) of A if m ( JJ ) (respectively m ( AJ ), m ( JA ), m ( JA + AJ )) is included in J .

With any vector space V , we can associate its tensor algebra T ( V ). As a vector space, it is defined by:

Algebra and Applications 2 - изображение 12

with V ⊗0= k and V ⊗ k+1:= VV ⊗k. The product is given by the concatenation :

The embedding of k V 0into T V gives the unit map u The tensor algebra - фото 13

The embedding of k = V ⊗0into T ( V ) gives the unit map u . The tensor algebra T ( V ) is also called the free (unital) algebra generated by V . This algebra is characterized by the following universal property: for any linear map φ from V to a unital algebra A , there is a unique unital algebra morphism картинка 14from T ( V ) to A extending φ .

Let A and B be the unital k -algebras. We put a unital algebra structure on AB in the following way:

Algebra and Applications 2 - изображение 15

The unit element 1 A⊗Bis given by 1 A⊗ 1 B, and the associativity is clear. This multiplication is thus given by:

Algebra and Applications 2 - изображение 16

where A B A B A A B B is defined by the flip of the two middle - фото 17: ABABAABB is defined by the flip of the two middle factors:

122 Coalgebras Coalgebras are the objects which are somehow dual to - фото 18

1.2.2. Coalgebras

Coalgebras are the objects which are somehow dual to algebras: axioms for coalgebras are derived from axioms for algebras by reversing the arrows of the corresponding diagrams:

A k -coalgebra is by definition a k -vector space C together with a bilinear map Δ : CCC , which is coassociative . The coassociativity is expressed by the commutativity of the following diagram:

Coalgebra C is counital if there is a counit ε C k such that the - фото 19

Coalgebra C is counital if there is a counit ε : Ck , such that the following diagram commutes:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Algebra and Applications 2»

Представляем Вашему вниманию похожие книги на «Algebra and Applications 2» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Algebra and Applications 2»

Обсуждение, отзывы о книге «Algebra and Applications 2» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x