Algebra and Applications 2

Здесь есть возможность читать онлайн «Algebra and Applications 2» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Algebra and Applications 2: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Algebra and Applications 2»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book is part of <i>Algebra and Geometry</i>, a subject within the SCIENCES collection published by ISTE and Wiley, and the second of three volumes specifically focusing on algebra and its applications. Algebra and Applications 2 centers on the increasing role played by combinatorial algebra and Hopf algebras, including an overview of the basic theories on non-associative algebras, operads and (combinatorial) Hopf algebras.<br /><br />The chapters are written by recognized experts in the field, providing insight into new trends, as well as a comprehensive introduction to the theory. The book incorporates self-contained surveys with the main results, applications and perspectives. The chapters in this volume cover a wide variety of algebraic structures and their related topics. Alongside the focal topic of combinatorial algebra and Hopf algebras, non-associative algebraic structures in iterated integrals, chronological calculus, differential equations, numerical methods, control theory, non-commutative symmetric functions, Lie series, descent algebras, Butcher groups, chronological algebras, Magnus expansions and Rota–Baxter algebras are explored.<br /><br /><i>Algebra and Applications 2</i> is of great interest to graduate students and researchers. Each chapter combines some of the features of both a graduate level textbook and of research level surveys.

Algebra and Applications 2 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Algebra and Applications 2», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
A subspace J C is called a subcoalgebra respectively a left coideal right - фото 20

A subspace JC is called a subcoalgebra (respectively a left coideal, right coideal and two-sided coideal) of C if Δ( J ) is contained in JJ (respectively CJ , JC, JC + CJ ) is included in J . The duality alluded to above can be made more precise:

PROPOSITION 1.1.–

1 1) The linear dual C* of a counital coalgebra C is a unital algebra, with product (respectively unit map) the transpose of the coproduct (respectively of the counit).

2 2) Let J be a linear subspace of C. Denote by J⊥ the orthogonal of J in C*.Then:– J is a two-sided coideal if and only if J⊥ is a subalgebra of C*.– J is a left coideal if and only if J⊥ is a left ideal of C*.– J is a right coideal if and only if J⊥ is a right ideal of C*.– J is a subcoalgebra if and only if J⊥ is a two-sided ideal of C*.

PROOF.– For any subspace K of C* , we will denote by K ⊥the subspace of those elements of C on which any element of K vanishes. It coincides with the intersection of the orthogonal of K with C , via the canonical embedding CC **. Therefore, for any linear subspaces JC and KC *we have:

Suppose that J is a twosided coideal Take any ξ η in J For any x J we - фото 21

Suppose that J is a two-sided coideal. Take any ξ, η in J ⊥. For any xJ , we have:

as Δ x J C C J Therefore J is a subalgebra of C Conversely if J - фото 22

as Δ xJC + CJ . Therefore, J ⊥is a subalgebra of C *. Conversely if J ⊥is a subalgebra, then:

which proves the first assertion We leave the reader to prove the three other - фото 23

which proves the first assertion. We leave the reader to prove the three other assertions along the same lines. □

Dually, we have the following:

PROPOSITION 1.2.– Let K be a linear subspace of C*. Then :

– K⊥ is a two-sided coideal if and only if K is a subalgebra of C*.

– K⊥ is a left coideal if and only if K is a left ideal of C*.

– K⊥ is a right coideal if and only if K is a right ideal of C*.

– K⊥ is a subcoalgebra if and only if K is a two-sided ideal of C*.

PROOF.– The linear dual ( CC ) *naturally contains the tensor product C *⊗ C *. Take as a multiplication the restriction of t Δ to C *⊗ C *:

Algebra and Applications 2 - изображение 24

and put u = : kC *. It is easily seen, by just reverting the arrows of the corresponding diagrams, that the coassociativity of Δ implies the associativity of m , and that the counit property for ε implies that u is a unit. □

Note that the duality property is not perfect: if the linear dual of a coalgebra is always an algebra, the linear dual of an algebra is generally not a coalgebra. However, the restricted dual A° of an algebra A is a coalgebra. It is defined as the space of linear forms on A vanishing on some finite-codimensional ideal (Sweedler 1969).

The coalgebra C is cocommutative if Algebra and Applications 2 - изображение 25where Algebra and Applications 2 - изображение 26is the flip. It will be convenient to use Sweedler’s notation :

Algebra and Applications 2 - изображение 27

Cocommutativity then expresses as:

In Sweedlers notation coassociativity reads as We will sometimes write the - фото 28

In Sweedler’s notation coassociativity reads as:

Algebra and Applications 2 - изображение 29

We will sometimes write the iterated coproduct as:

Algebra and Applications 2 - изображение 30

Sometimes, we will even mix the two ways of using Sweedler’s notation for the iterated coproduct, in the case where we want to partially keep track of how we have constructed it (Dǎscǎlescu et al . 2001). For example,

With any vector space V we can associate its tensor coalgebra Tc V It is - фото 31

With any vector space V , we can associate its tensor coalgebra Tc ( V ). It is isomorphic to T ( V ) as a vector space. The coproduct is given by the deconcatenation :

The counit is given by the natural projection of Tc V onto k Let C and D - фото 32

The counit is given by the natural projection of Tc ( V ) onto k .

Let C and D be the unital k -coalgebras. We put a counital coalgebra structure on CD in the following way: the comultiplication is given by:

where is again the flip of the two middle factors and the counity is given by - фото 33

where картинка 34is again the flip of the two middle factors, and the counity is given by εC ⊗ D = εCεD .

1.2.3. Convolution product

Let A be an algebra and C be a coalgebra (over the same field k ). Then, there is an associative product on the space of linear maps from C to A called the convolution product It is given by - фото 35of linear maps from C to A , called the convolution product . It is given by:

In Sweedlers notation it reads The associativity is a direct consequence of - фото 36

In Sweedler’s notation, it reads:

The associativity is a direct consequence of both the associativity of A and - фото 37

The associativity is a direct consequence of both the associativity of A and coassociativity of C .

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Algebra and Applications 2»

Представляем Вашему вниманию похожие книги на «Algebra and Applications 2» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Algebra and Applications 2»

Обсуждение, отзывы о книге «Algebra and Applications 2» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x