Algebra and Applications 2

Здесь есть возможность читать онлайн «Algebra and Applications 2» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Algebra and Applications 2: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Algebra and Applications 2»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book is part of <i>Algebra and Geometry</i>, a subject within the SCIENCES collection published by ISTE and Wiley, and the second of three volumes specifically focusing on algebra and its applications. Algebra and Applications 2 centers on the increasing role played by combinatorial algebra and Hopf algebras, including an overview of the basic theories on non-associative algebras, operads and (combinatorial) Hopf algebras.<br /><br />The chapters are written by recognized experts in the field, providing insight into new trends, as well as a comprehensive introduction to the theory. The book incorporates self-contained surveys with the main results, applications and perspectives. The chapters in this volume cover a wide variety of algebraic structures and their related topics. Alongside the focal topic of combinatorial algebra and Hopf algebras, non-associative algebraic structures in iterated integrals, chronological calculus, differential equations, numerical methods, control theory, non-commutative symmetric functions, Lie series, descent algebras, Butcher groups, chronological algebras, Magnus expansions and Rota–Baxter algebras are explored.<br /><br /><i>Algebra and Applications 2</i> is of great interest to graduate students and researchers. Each chapter combines some of the features of both a graduate level textbook and of research level surveys.

Algebra and Applications 2 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Algebra and Applications 2», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

with | x (j)| ≥ 1. The grading imposes:

Algebra and Applications 2 - изображение 74

so the maximum possible for any degree | x (j)| is nk . □

1.3.2. An example: the Hopf algebra of decorated rooted trees

A rooted tree is an oriented graph with a finite number of vertices, one among them being distinguished as the root , such that any vertex admits exactly one outgoing edge, except the root which has no outgoing edges. Here is the list of rooted trees up to five vertices, where the edges are tacitly oriented from top to bottom:

Algebra and Applications 2 - изображение 75

A rooted forest is a finite collection of rooted trees. The Connes-Kreimer Hopf algebra Algebra and Applications 2 - изображение 76is the Hopf algebra of rooted forests over k , graded by the number of vertices. It is the free commutative algebra on the linear space картинка 77spanned by nonempty rooted trees. The coproduct on a rooted forest u (i.e. a product of rooted trees) is described as follows: the set U of vertices of a forest u is endowed with a partial order defined by xy if and only if there is a path from a root to y passing through x . Any subset W of the set of vertices U of u defines a subforest w of u in an obvious manner, that is, by keeping the edges of u which link two elements of W . The coproduct is then defined by:

[1.8] Algebra and Applications 2 - изображение 78

Here, the notation W < V means that y < x for any vertex x of v and any vertex y of w , such that x and y are comparable. Such a couple ( V , W ) is also called an admissible cut , with crown (or pruning) v and trunk w . We have, for example:

With the restriction that V and W will be nonempty ie if V and W give rise - фото 79

With the restriction that V and W will be nonempty (i.e. if V and W give rise to an ordered partition of U into two blocks), we get the restricted coproduct:

[1.9] which is often displayed as Σ u u u in Sweedlers notation The - фото 80

which is often displayed as Σ (u) u ′ ⊗ u ″ in Sweedler’s notation. The iterated restricted coproduct, in terms of ordered partitions of U into n blocks, writes:

[1.10] and we get the fulliterated coproduct by allowing empty blocks in the formula - фото 81

and we get the full-iterated coproduct картинка 82by allowing empty blocks in the formula above. The coassociativity of the coproduct follows immediately.

Note, however, that the relation < on the subsets of vertices is not transitive. The notation Vn < … < V 1is to be understood as Vi < Vj for any i > j , i , j ∈ {1,…, n }.

1.3.3. Connected filtered bialgebras

A filtered bialgebra on k is a k -vector space together with an increasing ℕ-indexed filtration:

endowed with a product m ℋ ℋ ℋ a coproduct Δ ℋ ℋ ℋ a unit u k - фото 83

endowed with a product m : ℋ ⊗ ℋ → ℋ, a coproduct Δ : ℋ → ℋ ⊗ ℋ, a unit u : k → ℋ, a counit ε : ℋ → k and an antipode S : ℋ → ℋ, fulfilling the usual axioms of a bialgebra, and such that:

[1.11] Algebra and Applications 2 - изображение 84

[1.12] It is easy and left to the reader to show that the unit u and the counit ε - фото 85

It is easy (and left to the reader) to show that the unit u and the counit ε are of degree zero, if we consider the filtration on the base field k given by k 0= {0} and kn = k for any n ≥ 1. Namely, u ( kn ) ⊂ ℋ nand ε (ℋ n) ⊂ kn for any n ≥ 0.

If we ask for the existence of an antipode S , we get the definition of a filtered Hopf algebra if the antipode is of degree zero, that is, if:

[1.13] картинка 86

for any n ⊂ 0. Contrarily to the graded case, it is not likely that a filtered bialgebra with antipode is automatically a filtered Hopf algebra (see, for example, Montgomery (1993, Lemma 5.2.8), Andruskiewitsch and Schneider (2002) and Andruskiewitsch and Cuadra (2013)). The antipode is, however, of degree zero in the connected case: for any x ∈ ℋ, we set

[1.14] Algebra and Applications 2 - изображение 87

We say that the filtered bialgebra ℋ is connected if ℋ 0is one-dimensional. There is an analogue of Proposition 1.6 in the connected filtered case, the proof of which is very similar:

PROPOSITION 1.7.– For any x ∈ ℋ n, n ≥ 1, we can write :

[1.15] The map is coassociative on Ker ε and - фото 88

The map is coassociative on Ker ε and sends ℋ ninto ℋ nk k 1 As an easy - фото 89 is coassociative on Ker ε and sends ℋ ninto ℋ nk k 1 As an easy corollary the degree of the antipode - фото 90 sends ℋ ninto (ℋ n-k) ⊗k + 1.

As an easy corollary, the degree of the antipode is also zero in the connected case, that is, S (ℋ n) ⊆ ℋ nfor any n . This is an immediate consequence of the recursive formulae [1.19]and [1.20]below.

Any graded bialgebra, or the Hopf algebra, is obviously filtered by the canonical filtration associated with the grading:

[1.16] Algebra and Applications 2 - изображение 91

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Algebra and Applications 2»

Представляем Вашему вниманию похожие книги на «Algebra and Applications 2» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Algebra and Applications 2»

Обсуждение, отзывы о книге «Algebra and Applications 2» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x