Algebra and Applications 2

Здесь есть возможность читать онлайн «Algebra and Applications 2» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Algebra and Applications 2: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Algebra and Applications 2»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book is part of <i>Algebra and Geometry</i>, a subject within the SCIENCES collection published by ISTE and Wiley, and the second of three volumes specifically focusing on algebra and its applications. Algebra and Applications 2 centers on the increasing role played by combinatorial algebra and Hopf algebras, including an overview of the basic theories on non-associative algebras, operads and (combinatorial) Hopf algebras.<br /><br />The chapters are written by recognized experts in the field, providing insight into new trends, as well as a comprehensive introduction to the theory. The book incorporates self-contained surveys with the main results, applications and perspectives. The chapters in this volume cover a wide variety of algebraic structures and their related topics. Alongside the focal topic of combinatorial algebra and Hopf algebras, non-associative algebraic structures in iterated integrals, chronological calculus, differential equations, numerical methods, control theory, non-commutative symmetric functions, Lie series, descent algebras, Butcher groups, chronological algebras, Magnus expansions and Rota–Baxter algebras are explored.<br /><br /><i>Algebra and Applications 2</i> is of great interest to graduate students and researchers. Each chapter combines some of the features of both a graduate level textbook and of research level surveys.

Algebra and Applications 2 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Algebra and Applications 2», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

[1.111] is symmetric in X and Y due to the fact that the two constant vector fields - фото 430

is symmetric in X and Y , due to the fact that the two constant vector fields XO and YO commute. The second assertion is left as an exercise for the reader. □

With the notations of section 1.6.4, there is a unique NAP algebra morphism

[1.112] Algebra and Applications 2 - изображение 431

the frozen Cayley map , such that Algebra and Applications 2 - изображение 432. By also considering the unique NAP algebra morphism the maps GXO t ℝ n ℝ nare called the frozen elementary differentials - фото 433, the maps GX,O ( t ) : ℝ n→ ℝ nare called the frozen elementary differentials .

PROPOSITION 1.18.– For any rooted tree t, each vertex v being decorated by a vector field Xv, the vector field is given at x ∈ ℝ n by the following recursive procedure: if the decorated tree t is obtained by grafing all of its branches tk on the root r decorated by the vector field , that is, if it writes , then :

[1.113] Algebra and Applications 2 - изображение 434

with 1114 where stands for the - фото 435 with:

[1.114] where stands for the k th differential of fi evaluated at x PROOF We - фото 436

where картинка 437 stands for the k th differential of fi, evaluated at x .

PROOF.– We prove the result by induction on the number k of branches: for k = 1, we check:

Now we can compute using the induction hypothesis and the fact that the vector - фото 438

Now we can compute using the induction hypothesis and the fact that the vector fields are constant COROLLARY 13 closed formula With the notations of Corollary - фото 439are constant:

COROLLARY 13 closed formula With the notations of Corollary 12 for any - фото 440

COROLLARY 1.3 (closed formula).– With the notations of Corollary 1.2, for any rooted tree t with set of vertices Algebra and Applications 2 - изображение 441 and root r, each vertex v being decorated by a vector field Algebra and Applications 2 - изображение 442, the vector field is given at x ℝ n by the following formula 1115 172 Novikov - фото 443 is given at x ∈ ℝ n by the following formula:

[1.115] 172 Novikov algebras A Novikov algebra is a right preLie algebra which is - фото 444

1.7.2. Novikov algebras

A Novikov algebra is a right pre-Lie algebra which is also left NAP, namely, a vector space A together with a bilinear product ∗, such that, for any a , b , cA , we have:

[1.116] Algebra and Applications 2 - изображение 445

[1.117] Algebra and Applications 2 - изображение 446

Novikov algebras first appeared in hydrodynamical equations (Balinskii and Novikov 1985; Osborn 1992). The prototype is a commutative associative algebra together with a derivation D , with the Novikov product being given by:

[1.118] Algebra and Applications 2 - изображение 447

The free Novikov algebra on a set of generators has been given in Dzhumadil’daev and Löfwall (2002, section 7) in terms of some classes of rooted trees.

1.7.3. Assosymmetric algebras

An assosymmetric algebra is a vector space endowed with a bilinear operation that is both left and right pre-Lie, which means that the associator a * ( b * c ) – ( ab ) ∗ c is symmetric under the permutation group S 3. This notion was introduced by Kleinfeld (1957) (see also Hentzel et al . (1996)). All associative algebras are obviously assosymmetric; however, the converse is not true.

1.7.4. Dendriform algebras

A dendriform algebra (Loday 2001) over the field k is a k -vector space A endowed with two bilinear operations, denoted ≺ and ≻ and called right and left products, respectively, subject to the three axioms below:

[1.119] Algebra and Applications 2 - изображение 448

[1.120] Algebra and Applications 2 - изображение 449

[1.121] Algebra and Applications 2 - изображение 450

We readily verify that these relations yield associativity for the product

[1.122] Algebra and Applications 2 - изображение 451

However, at the same time-ordering, the dendriform relations imply that the bilinear product ⊳ defined by:

[1.123] Algebra and Applications 2 - изображение 452

is left pre-Lie. The associative operation * and the pre-Lie operation ⊳ define the same Lie bracket, and this is, of course, still true for the opposite (right) pre-Lie product ⊲:

In the commutative case commutative dendriform algebras are also named Zinbiel - фото 453

In the commutative case (commutative dendriform algebras are also named Zinbiel algebras (Loday 1995, 2001), the left and right operations are further required to identify, so that ab = ba . In this case, both pre-Lie products vanish. A natural example of a commutative dendriform algebra is given by the shuffle algebra in terms of half-shuffles (Schützenberger 1958/1959). Any associative algebra A equipped with a linear integral-like map I : AA satisfying the integration by parts rule also gives a dendriform algebra, when ab := aI ( b ) and ab := I ( a ) b . The left pre-Lie product is then given by ab = [ I ( a ), b ]. It is worth mentioning that Zinbiel algebras are also NAP algebras, as shown by the computation below (dating back to Schützenberger (1958/1959)):

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Algebra and Applications 2»

Представляем Вашему вниманию похожие книги на «Algebra and Applications 2» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Algebra and Applications 2»

Обсуждение, отзывы о книге «Algebra and Applications 2» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x