Algebra and Applications 2

Здесь есть возможность читать онлайн «Algebra and Applications 2» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Algebra and Applications 2: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Algebra and Applications 2»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book is part of <i>Algebra and Geometry</i>, a subject within the SCIENCES collection published by ISTE and Wiley, and the second of three volumes specifically focusing on algebra and its applications. Algebra and Applications 2 centers on the increasing role played by combinatorial algebra and Hopf algebras, including an overview of the basic theories on non-associative algebras, operads and (combinatorial) Hopf algebras.<br /><br />The chapters are written by recognized experts in the field, providing insight into new trends, as well as a comprehensive introduction to the theory. The book incorporates self-contained surveys with the main results, applications and perspectives. The chapters in this volume cover a wide variety of algebraic structures and their related topics. Alongside the focal topic of combinatorial algebra and Hopf algebras, non-associative algebraic structures in iterated integrals, chronological calculus, differential equations, numerical methods, control theory, non-commutative symmetric functions, Lie series, descent algebras, Butcher groups, chronological algebras, Magnus expansions and Rota–Baxter algebras are explored.<br /><br /><i>Algebra and Applications 2</i> is of great interest to graduate students and researchers. Each chapter combines some of the features of both a graduate level textbook and of research level surveys.

Algebra and Applications 2 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Algebra and Applications 2», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

where α is the multiplicatively extended to forests, β is seen as an infinitesimal character ofCK, and * is the dualization of the left coaction Φ ofon ℋ CK defined in section 1.6.3 .

The condition α (•) = 1 is in fact dropped in Calaque et al . (2011, Proposition 15): the price to pay is that one has to replace the Hopf algebra ℋ by a non-connected bialgebra картинка 412with a suitable coproduct, such that ℋ is obtained as the quotient картинка 413, where картинка 414is the ideal generated by • – 1. The substitution product * then coincides with the one considered in Chartier et al . (2010) via natural identifications.

1.7. Other related algebraic structures

1.7.1. NAP algebras

NAP algebras (NAP for Non-Associative Permutative) appear under this name in Livernet (2006), and under the name “left- (right-)commutative algebras” in Dzhumadil’daev and Löfwall (2002). They can be seen in some sense as a “simplified version” of pre-Lie algebras. Saidi showed that the pre-Lie operad is a deformation of the NAP operad in a precise sense, involving the notion of current-preserving operad (Saidi 2014).

1.7.1.1. Definition and general properties

A left NAP algebra over a field k is a k -vector space A with a bilinear binary composition ▶ that satisfies the left NAP identity:

[1.105] Algebra and Applications 2 - изображение 415

for any a, b, cA . Analogously, a right NAP algebra is a k -vector space A with a binary composition ◀ satisfying the right NAP identity:

[1.106] Algebra and Applications 2 - изображение 416

As any right NAP algebra is also a left NAP algebra with product ab := ba , we can stick to left NAP algebras, which is what we will do unless specifically indicated.

1.7.1.2. Free NAP algebras

The left Butcher product st of two rooted trees s and t is defined by grafting s on the root of t . For example:

[1.107] The following theorem is due to Dzhumadildaev and Löfwall 2002 see Livernet - фото 417

The following theorem is due to Dzhumadil’daev and Löfwall (2002) (see Livernet (2006) for an operadic approach):

THEOREM 1.5.– The free NAP algebra with d generators is the vector space spanned by rooted trees with d colors, endowed with the left Butcher product .

PROOF.– We give the proof for one generator, the case of d generators being entirely similar. The left NAP property for the Butcher product is obvious. Let ( A , ▶) be any left NAP algebra, and let aA . We have to prove that there exists a unique left NAP algebra morphism Ga from картинка 418to ( A , ▶), such that Ga (•) = a . As in the pre-Lie case, we proceed by double induction, first on the number n of vertices, and second on the number k of branches. In the case k = 1, the tree t writes B +( t 1) = t 1∘ ∙; hence, Ga ( t ) = Ga ( s ) ▶ a is the only possible choice. Now a tree with k branches writes:

[1.108] The only possible choice is then 1109 and the result is clearly symmetric - фото 419

The only possible choice is then:

[1.109] and the result is clearly symmetric in t 1and t 2due to the left NAP identity - фото 420

and the result is clearly symmetric in t 1and t 2due to the left NAP identity in A . Using the induction hypothesis, the result is also invariant under permutation of the branches 2,3,…, k . Hence, it is invariant under the permutation of all branches, which proves the theorem. □

Despite the similarity with the pre-Lie situation described in section 1.6.2, the NAP framework is much simpler due to the set-theoretic nature of the Butcher product: for any trees s and t , the Butcher product st is a tree, whereas the grafting st is a sum of trees. We obtain for the first trees:

1713 NAP algebras of vector fields We consider the flat affine n - фото 421

1.7.1.3. NAP algebras of vector fields

We consider the flat affine n -dimensional space En although it is possible, through parallel transport, to consider any smooth manifold endowed with a flat torsion-free connection. Fix an origin in En , which will be denoted by O . For vector fields Algebra and Applications 2 - изображение 422and Algebra and Applications 2 - изображение 423, we set:

[1.110] where is the constant vector field obtained by freezing the coefficients of X - фото 424

where is the constant vector field obtained by freezing the coefficients of X at x - фото 425is the constant vector field obtained by freezing the coefficients of X at x = O .

PROPOSITION 1.17.– The space χ (ℝ n) of vector fields endowed with productO is a left NAP algebra. Moreover, for any other choice of origin O’En, the conjugation with the translation of vector Algebra and Applications 2 - изображение 426 is an isomorphism from ( χ (ℝ n), ▶ O )) onto ( χ (ℝ n), ▶ O’)).

PROOF.– Let Algebra and Applications 2 - изображение 427, Algebra and Applications 2 - изображение 428and Algebra and Applications 2 - изображение 429be three vector fields. Then:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Algebra and Applications 2»

Представляем Вашему вниманию похожие книги на «Algebra and Applications 2» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Algebra and Applications 2»

Обсуждение, отзывы о книге «Algebra and Applications 2» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x