Algebra and Applications 2

Здесь есть возможность читать онлайн «Algebra and Applications 2» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Algebra and Applications 2: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Algebra and Applications 2»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book is part of <i>Algebra and Geometry</i>, a subject within the SCIENCES collection published by ISTE and Wiley, and the second of three volumes specifically focusing on algebra and its applications. Algebra and Applications 2 centers on the increasing role played by combinatorial algebra and Hopf algebras, including an overview of the basic theories on non-associative algebras, operads and (combinatorial) Hopf algebras.<br /><br />The chapters are written by recognized experts in the field, providing insight into new trends, as well as a comprehensive introduction to the theory. The book incorporates self-contained surveys with the main results, applications and perspectives. The chapters in this volume cover a wide variety of algebraic structures and their related topics. Alongside the focal topic of combinatorial algebra and Hopf algebras, non-associative algebraic structures in iterated integrals, chronological calculus, differential equations, numerical methods, control theory, non-commutative symmetric functions, Lie series, descent algebras, Butcher groups, chronological algebras, Magnus expansions and Rota–Baxter algebras are explored.<br /><br /><i>Algebra and Applications 2</i> is of great interest to graduate students and researchers. Each chapter combines some of the features of both a graduate level textbook and of research level surveys.

Algebra and Applications 2 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Algebra and Applications 2», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Let s be a subforest of a rooted tree t . Denote by t / s the tree obtained by contracting each connected component of s onto a vertex. We turn ℋ into a bialgebra by defining a coproduct Δ : ℋ → ℋ ⊗ ℋ on each tree Algebra and Applications 2 - изображение 367by :

[1.88] Algebra and Applications 2 - изображение 368

where the sum runs over all possible subforests (including the unit • and the full subforest t ). As usual we extend the coproduct Δ multiplicatively onto картинка 369. In fact, coassociativity is easily verified. This makes ℋ := n ≥ 0ℋ na connected graded bialgebra, hence a Hopf algebra, where the grading is defined in terms of the number of edges. The antipode S : ℋ → ℋ is given (recursively with respect to the number of edges) by one of the two following formulae:

[1.89] 190 It turns out that ℋ CKis left comodulebialgebra over ℋ Calaque et al - фото 370

[1.90] It turns out that ℋ CKis left comodulebialgebra over ℋ Calaque et al 2011 - фото 371

It turns out that ℋ CKis left comodule-bialgebra over ℋ (Calaque et al . 2011; Manchon and Saidi 2011), in the sense that the following diagram commutes:

Here the coaction Φ ℋ CK ℋ ℋ CKis the algebra morphism given by Φ 1 - фото 372

Here, the coaction Φ : ℋ CK→ ℋ ⊗ ℋ CKis the algebra morphism given by Φ( 1) = • ⊗ 1and Φ( t ) = Δ ℋ( t ) for any nonempty tree t . As a result, the group of characters of ℋ acts on the group of characters of ℋ CKby automorphisms.

1.6.4. Pre-Lie algebras of vector fields

1.6.4.1. Flat torsion-free connections

Let M be a differentiable manifold, and let ▽ be the covariant derivation operator associated with a connection on the tangent bundle TM . The covariant derivation is a bilinear operator on vector fields (i.e. two sections of the tangent bundle): ( X, Y ) ↦ ▽ XY , such that the following axioms are fulfilled:

The torsion of the connection is defined by 191 and - фото 373

The torsion of the connection is defined by 191 and the curvature tensor is defined by 192 - фото 374is defined by:

[1.91] and the curvature tensor is defined by 192 The connection is flat if the - фото 375

and the curvature tensor is defined by:

[1.92] The connection is flat if the curvature R vanishes identically and - фото 376

The connection is flat if the curvature R vanishes identically, and torsion-free if картинка 377. The following crucial observation by Matsushima (1968, Lemma 1) is an immediate consequence of equation [1.43]:

PROPOSITION 1.14.– For any smooth manifold M endowed with aflat torsion-free connection ▽, the space χ ( M ) of vector fields is a left pre-Lie algebra, with pre-Lie product given by :

[1.93] Algebra and Applications 2 - изображение 378

Note that on M = ℝ n, endowed with its canonical flat torsion-free connection, the pre-Lie product is given by:

[1.94] 1642 Relating two preLie structures Cayley 1857 discovered a link - фото 379

1.6.4.2. Relating two pre-Lie structures

Cayley (1857) discovered a link between rooted trees and vector fields on the manifold ℝ n, endowed with its natural flat torsion free connection, which can be described in modern terms as follows: let картинка 380be the free pre-Lie algebra on the space of vector fields on ℝ n. A basis of картинка 381is given by rooted trees with vertices decorated by some basis of χ (ℝ n). There is a unique pre-Lie algebra morphism Algebra and Applications 2 - изображение 382, the Cayley map , such that Algebra and Applications 2 - изображение 383for any vector field X .

PROPOSITION 1.15.– For any rooted tree t, with each vertex v being decorated by a vector field Xv, the vector field картинка 384 is given at x ∈ ℝ n by the following recursive procedure (Hairer et al. 2002): if the decorated tree t is obtained by grafting all of its branches tk on the root r decorated by the vector field , that is, ifit writes , then :

[1.95] 196 where stands for the k th differential of fi PROOF From equation - фото 385

[1.96] Algebra and Applications 2 - изображение 386

where stands for the k th differential of fi .

PROOF. – From equation [1.94], for any vector field X and any other vector field Algebra and Applications 2 - изображение 387:

[1.97] In other words X Y is the derivative of Y along the vector field X where Y - фото 388

In other words, XY is the derivative of Y along the vector field X , where Y is viewed as a C ∞map from ℝ nto ℝ n. We prove the result by induction on the number k of branches: for k = 1, we check:

Now we can compute using the Leibniz rule and the induction hypothesis we - фото 389

Now, we can compute, using the Leibniz rule and the induction hypothesis (we drop the point x ∈ ℝ nwhere the vector fields are evaluated):

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Algebra and Applications 2»

Представляем Вашему вниманию похожие книги на «Algebra and Applications 2» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Algebra and Applications 2»

Обсуждение, отзывы о книге «Algebra and Applications 2» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x