Algebra and Applications 2

Здесь есть возможность читать онлайн «Algebra and Applications 2» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Algebra and Applications 2: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Algebra and Applications 2»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book is part of <i>Algebra and Geometry</i>, a subject within the SCIENCES collection published by ISTE and Wiley, and the second of three volumes specifically focusing on algebra and its applications. Algebra and Applications 2 centers on the increasing role played by combinatorial algebra and Hopf algebras, including an overview of the basic theories on non-associative algebras, operads and (combinatorial) Hopf algebras.<br /><br />The chapters are written by recognized experts in the field, providing insight into new trends, as well as a comprehensive introduction to the theory. The book incorporates self-contained surveys with the main results, applications and perspectives. The chapters in this volume cover a wide variety of algebraic structures and their related topics. Alongside the focal topic of combinatorial algebra and Hopf algebras, non-associative algebraic structures in iterated integrals, chronological calculus, differential equations, numerical methods, control theory, non-commutative symmetric functions, Lie series, descent algebras, Butcher groups, chronological algebras, Magnus expansions and Rota–Baxter algebras are explored.<br /><br /><i>Algebra and Applications 2</i> is of great interest to graduate students and researchers. Each chapter combines some of the features of both a graduate level textbook and of research level surveys.

Algebra and Applications 2 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Algebra and Applications 2», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
COROLLARY 12 closed formula For any rooted tree t with set of vertices and - фото 390

COROLLARY 1.2 (closed formula).– For any rooted tree t with set of vertices and root r, each vertex v being decorated by a vector field , the vector field is given at x ∈ ℝn by the following formula:

[1.98] Algebra and Applications 2 - изображение 391

with the shorthand notation:

[1.99] Algebra and Applications 2 - изображение 392

where the product runs over the incoming vertices of v .

Now fix a vector field X on ℝ nand consider the map dX from undecorated rooted trees to vector field-decorated rooted trees, which decorates each vertex by X . It is obviously a pre-Lie algebra morphism, and Algebra and Applications 2 - изображение 393is the unique pre-Lie algebra morphism that sends the one-vertex tree • to the vector field X .

1.6.5. B-series, composition and substitution

B-series have been defined by Hairer and Wanner, following the pioneering work of Butcher (1963) on Runge-Kutta methods for the numerical resolution of differential equations. Remarkably enough, rooted trees revealed to be an adequate tool not only for vector fields, but also for the numerical approximation of their integral curves. Butcher discovered that the Runge-Kutta methods formed a group (since then called the Butcher group), which was nothing but the character group of the Connes-Kreimer Hopf algebra ℋ CK(Brouder 2000).

Consider any left pre-Lie algebra ( A , ⊳), and introduce a fictitious unit 1, such that 1a = a1= a for any aA , and consider for any aA , the unique left pre-Lie algebra morphism Fa : (T, →) → ( A , ⊳), such that Fa (•) = a . A B-series is an element of hA [[ h ]] ⊕ k . 1defined by:

[1.100] where α is any linear form on here σ s is the symmetry factor of the - фото 394

where α is any linear form on картинка 395(here, σ ( s ) is the symmetry factor of the tree, that is, the order of its group of automorphisms). It matches the usual notion of B -series (Hairer et al . 2002) when A is the pre-Lie algebra of vector fields on ℝ n(it is also convenient to set Fa (∅) = 1). In this case, the vector fields Fa ( t ) for a tree t are differentiable maps from ℝ nto ℝ ncalled elementary differentials. B -series can be composed coefficient wise, as series in the indeterminate h , whose coefficients are maps from ℝ nto ℝ n. The same definition with trees decorated by a set of colors картинка 396leads to straightforward generalizations. For example, the P -series used in partitioned Runge-Kutta methods (Hairer et al . 2002) correspond to bi-coloured trees.

A slightly different way of defining B -series is the following: consider the unique pre-Lie algebra morphism Algebra and Applications 2 - изображение 397, such that ℱ a (•) = ha . It respects the gradings given by the number of vertices and the powers of h , respectively; hence, it extends to Algebra and Applications 2 - изображение 398, where картинка 399is the completion of Algebra and Applications 2 - изображение 400with respect to the grading. We further extend it to the empty tree by setting ∙ a(∅) = 1. We then have:

[1.101] Algebra and Applications 2 - изображение 401

where картинка 402is the isomorphism from картинка 403to картинка 404given by the normalized dual basis (see section 1.6.3).

We restrict ourselves to B -series B ( α ; a ) with α (∅) = 1. Such α s are in one-to-one correspondence with characters of the algebra of forests (which is the underlying algebra of ℋ CK) by setting:

[1.102] The HairerWanner theorem Hairer et al 2002 Theorem III110 says that the - фото 405

The Hairer-Wanner theorem (Hairer et al . 2002, Theorem III.1.10) says that the composition of B -series corresponds to the convolution product of characters of ℋ CK, namely:

[1.103] where linear forms α β on and their character counterparts are identified - фото 406

where linear forms α, β on картинка 407and their character counterparts are identified modulo the above correspondence.

Let us now turn to substitution (Chartier et al . 2010). The idea is to replace the vector field a in a B -series B ( β ; a ) by another vector field Algebra and Applications 2 - изображение 408, which expresses itself as a B -series, that is, Algebra and Applications 2 - изображение 409, where α is now a linear form on картинка 410, such that α (∅) = 0. Here, we suppose that α (•) = 1. The following proposition is proven in Calaque et al . (2011):

PROPOSITION 1.16.– For any linear forms α,β on with α (• = 1), we have :

[1.104] where α is the multiplicatively extended to forests β is seen as an - фото 411

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Algebra and Applications 2»

Представляем Вашему вниманию похожие книги на «Algebra and Applications 2» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Algebra and Applications 2»

Обсуждение, отзывы о книге «Algebra and Applications 2» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x