Algebra and Applications 2

Здесь есть возможность читать онлайн «Algebra and Applications 2» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Algebra and Applications 2: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Algebra and Applications 2»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book is part of <i>Algebra and Geometry</i>, a subject within the SCIENCES collection published by ISTE and Wiley, and the second of three volumes specifically focusing on algebra and its applications. Algebra and Applications 2 centers on the increasing role played by combinatorial algebra and Hopf algebras, including an overview of the basic theories on non-associative algebras, operads and (combinatorial) Hopf algebras.<br /><br />The chapters are written by recognized experts in the field, providing insight into new trends, as well as a comprehensive introduction to the theory. The book incorporates self-contained surveys with the main results, applications and perspectives. The chapters in this volume cover a wide variety of algebraic structures and their related topics. Alongside the focal topic of combinatorial algebra and Hopf algebras, non-associative algebraic structures in iterated integrals, chronological calculus, differential equations, numerical methods, control theory, non-commutative symmetric functions, Lie series, descent algebras, Butcher groups, chronological algebras, Magnus expansions and Rota–Baxter algebras are explored.<br /><br /><i>Algebra and Applications 2</i> is of great interest to graduate students and researchers. Each chapter combines some of the features of both a graduate level textbook and of research level surveys.

Algebra and Applications 2 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Algebra and Applications 2», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

[1.71] Algebra and Applications 2 - изображение 298

with the notations of equation [1.68]. The reader is invited to check the two associativity axioms, as well as the equivariance axiom which reads:

[1.72] Algebra and Applications 2 - изображение 299

for any σ , σ ′ ∈ ASSOC kand Algebra and Applications 2 - изображение 300. Let us denote by ek the unit element in the symmetric group Sk . We obviously have ek ∘ i el = e k + l – 1for any i = 1,…, k . In particular,

[1.73] Algebra and Applications 2 - изображение 301

Now let V be an algebra over the operad ASSOC, and let Φ : ASSOC → Endop( V ) be the corresponding morphism of operads. Let μ : VVV be the binary operation Φ ( e2 ). In view of equation [1.73]we have:

[1.74] Algebra and Applications 2 - изображение 302

In other words, μ is associative. As ek can be obtained, for any k ≥ 3, by iteratively composing k – 2 times the element e 2, we see that any element of ASSOC kcan be obtained from e 2, partial compositions, symmetric group actions and linear combinations. As a result, any k -ary operation on V , which is in the image of Φ, can be obtained in terms of the associative product μ , partial compositions, symmetric group actions and linear combinations. Summing up, an algebra over the operad ASSOC is nothing but an associative algebra. In view of equation [1.69], the free ASSOC-algebra over a vector space W is the (non-unital) tensor algebra In the same line of thoughts the operad governing unital associative - фото 303.

In the same line of thoughts, the operad governing unital associative algebras is defined similarly, except that the space of 0-ary operations is k.e 0, with ek ∘ i e 0= e k – 1for any i = 1,…, k . The unit element u : kV of the algebra V is given by u = Φ( e 0). The free unital algebra over a vector space W is the full tensor algebra Algebra and Applications 2 - изображение 304.

1.5.4.2. The operad COM

This operad governs commutative associative algebras. COM nis one-dimensional for any n ≥ 1, given by for any n 0 whereas COM 0 0 The right action of Sn on COM nis trivial - фото 305for any n ≥ 0, whereas COM 0:= {0}. The right action of Sn on COM nis trivial. The partial compositions are defined by:

[1.75] The three axioms of an operad are obviously verified Let V be an algebra over - фото 306

The three axioms of an operad are obviously verified. Let V be an algebra over the operad COM, and let Φ : COM → Endop( V ) be the corresponding morphism of operads. Let μ : VVV be the binary operation Algebra and Applications 2 - изображение 307. We obviously have:

[1.76] Algebra and Applications 2 - изображение 308

where картинка 309is the flip. Hence, μ is associative and commutative. Here, any k -ary operation in the image of Φ can be obtained, up to a scalar, by iteratively composing картинка 310with itself. Hence, an algebra over the operad COM is nothing but a commutative associative algebra. In view of [1.69], the free COM-algebra over a vector space W is the (non-unital) symmetric algebra The operad governing unital commutative associative algebras is defined - фото 311.

The operad governing unital commutative associative algebras is defined similarly, except that the space of 0-ary operations is Algebra and Applications 2 - изображение 312, with Algebra and Applications 2 - изображение 313for any i = 1,…, k . The unit element u : kV of the algebra V is given by u = Φ( e 0). The free unital algebra over a vector space W is the full symmetric algebra The map is easily seen to define a morphism of operads Ψ ASSOC COM - фото 314.

The map картинка 315is easily seen to define a morphism of operads Ψ : ASSOC → COM. Hence, any COM-algebra is also an ASSOC-algebra. This expressed the fact that, forgetting commutativity, a commutative associative algebra is also an associative algebra.

1.5.4.3. Associative algebras

Any associative algebra A is some degenerate form of operad: indeed, defining Algebra and Applications 2 - изображение 316by Algebra and Applications 2 - изображение 317and Algebra and Applications 2 - изображение 318for n ≠ 1, the collection картинка 319is obviously an operad. An algebra over картинка 320is the same as an A -module.

This point of view leads to a more conceptual definition of operads: an operad is nothing but an associative unital algebra in the category of “S-objects”, that is, collections of vector spaces картинка 321with a right action of Sn on Algebra and Applications 2 - изображение 322. There is a suitable “tensor product” ⌧ on S-objects, however not symmetric, such that the global composition γ and the unit Algebra and Applications 2 - изображение 323(defined by u (1) = e ) make the following diagrams commute:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Algebra and Applications 2»

Представляем Вашему вниманию похожие книги на «Algebra and Applications 2» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Algebra and Applications 2»

Обсуждение, отзывы о книге «Algebra and Applications 2» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x