Algebra and Applications 2

Здесь есть возможность читать онлайн «Algebra and Applications 2» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Algebra and Applications 2: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Algebra and Applications 2»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book is part of <i>Algebra and Geometry</i>, a subject within the SCIENCES collection published by ISTE and Wiley, and the second of three volumes specifically focusing on algebra and its applications. Algebra and Applications 2 centers on the increasing role played by combinatorial algebra and Hopf algebras, including an overview of the basic theories on non-associative algebras, operads and (combinatorial) Hopf algebras.<br /><br />The chapters are written by recognized experts in the field, providing insight into new trends, as well as a comprehensive introduction to the theory. The book incorporates self-contained surveys with the main results, applications and perspectives. The chapters in this volume cover a wide variety of algebraic structures and their related topics. Alongside the focal topic of combinatorial algebra and Hopf algebras, non-associative algebraic structures in iterated integrals, chronological calculus, differential equations, numerical methods, control theory, non-commutative symmetric functions, Lie series, descent algebras, Butcher groups, chronological algebras, Magnus expansions and Rota–Baxter algebras are explored.<br /><br /><i>Algebra and Applications 2</i> is of great interest to graduate students and researchers. Each chapter combines some of the features of both a graduate level textbook and of research level surveys.

Algebra and Applications 2 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Algebra and Applications 2», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

then endows A with a structure of a pro-unipotent group. An example of this situation is given by A = hB [[ h ]], where B is any pre-Lie algebra, and Aj = hjB [[ h ]]. This group admits a more transparent presentation as follows: introduce a fictitious unit 1, such that 1a = a1= a for any aA , and define W : AA by:

[1.45] The application W is clearly a bijection The inverse denoted by Ω also - фото 228

The application W is clearly a bijection. The inverse, denoted by Ω, also appears under the name “pre-Lie Magnus expansion” in Ebrahimi-Fard and Manchon (2009b). It verifies the equation:

[1.46] where the Bi s are the Bernoulli numbers The first few terms are 147 By - фото 229

where the Bi s are the Bernoulli numbers. The first few terms are:

[1.47] By transferring the BCH product by means of the map W namely 148 we - фото 230

By transferring the BCH product by means of the map W , namely:

[1.48] we have W a W b W C a b eLa e Lb 1 1 hence W a W - фото 231

we have W ( a ) # W ( b ) = W ( C ( a , b )) = eLa e Lb 11, hence W ( a )# W ( b ) = W ( a ) + eLa W ( b ). The product # is thus given by the simple formula:

[1.49] Algebra and Applications 2 - изображение 232

The inverse is given by a #–1= W (–Ω( a )) = e –LΩ(a) 11. If ( A , ⊳) and ( B , ⊳) are two such pre-Lie algebras and ψ : AB is a filtration-preserving pre-Lie algebra morphism, we should immediately check that for any a , bA we have:

[1.50] Algebra and Applications 2 - изображение 233

In other words, the group of formal flows is a functor from the category of complete filtered pre-Lie algebras to the category of groups.

When the pre-Lie product ⊳ is associative, all of this simplifies to:

[1.51] Algebra and Applications 2 - изображение 234

and

[1.52] 143 The preLie PoincaréBirkhoffWitt theorem This section exposes a - фото 235

1.4.3. The pre-Lie Poincaré–Birkhoff–Witt theorem

This section exposes a result by Guin and Oudom (2005).

THEOREM 1.3.– Let A be any left pre-Lie algebra, and let S ( A ) be its symmetric algebra, that is, the free commutative algebra on A. Let A Lie be the underlying Lie algebra of A, that is, the vector space A endowed with the Lie bracket given by [ a, b ] = abba for any a, bA, and let be the enveloping algebra of A Lie, endowed with its usual increasing filtration. Let us consider the associative algebra as a left module over itself .

There exists a left -module structure on S ( A ) and a canonical left -module isomorphism , such that the associated graded linear map Gr is an isomorphism of commutative graded algebras .

PROOF.– The Lie algebra morphism

extends by the Leibniz rule to a unique Lie algebra morphism L A Der S A - фото 236

extends by the Leibniz rule to a unique Lie algebra morphism L : A → Der S ( A ). Now we claim that the map M : A → End S ( A ) defined by:

[1.53] Algebra and Applications 2 - изображение 237

is a Lie algebra morphism. Indeed, for any a, bA and uS ( A ) we have:

Hence which proves the claim Now M extends by universal property of the - фото 238

Hence

which proves the claim Now M extends by universal property of the enveloping - фото 239

which proves the claim. Now M extends, by universal property of the enveloping algebra, to a unique algebra morphism Algebra and Applications 2 - изображение 240. The linear map:

Algebra and Applications 2 - изображение 241

is clearly a morphism of left картинка 242-modules. It is immediately seen by induction that for any a 1,…, anA , we have η ( a 1… an ) = a 1… an + v , where v is a sum of terms of degree < n – 1. This proves the theorem. □

REMARK 1.3.– Let us recall that the symmetrization map Algebra and Applications 2 - изображение 243, uniquely determined by σ ( an ) = an for any aA and any integer n, is an isomorphism for the two A Lie- module structures given by the adjoint action. This is not the case for the map η defined above. The fact that it is possible to replace the adjoint action of on itself by the simple left multiplication is a remarkable property ofpre-Lie algebras, and makes Theorem 1.3 different from the usual Lie algebra PBW theorem .

Let us finally note that, if p stands for the projection from S ( A ) onto A , for any a 1,…, akA , we easily get:

[1.54] by a simple induction on k The linear isomorphism η transfers the product of - фото 244

by a simple induction on k . The linear isomorphism η transfers the product of the enveloping algebra Algebra and Applications 2 - изображение 245into a noncommutative product * on Algebra and Applications 2 - изображение 246defined by:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Algebra and Applications 2»

Представляем Вашему вниманию похожие книги на «Algebra and Applications 2» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Algebra and Applications 2»

Обсуждение, отзывы о книге «Algebra and Applications 2» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x