Bruno D´Amore - Los problemas de matemática en la práctica didáctica

Здесь есть возможность читать онлайн «Bruno D´Amore - Los problemas de matemática en la práctica didáctica» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на испанском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Los problemas de matemática en la práctica didáctica: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Los problemas de matemática en la práctica didáctica»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Resolver problemas de matemática es una de las tareas que resulta más difíciles para los estudiantes en todos los niveles escolares.Existen delicados aspectos cognitivos, relativos a la matemática, como también afectivos de diversa naturaleza. Es por esto que, desde hace ya varias décadas, estudiosos de psicología, pedagogía,y didáctica estudian el…. problema de los problemas.En este libro, el experto italiano en didáctica de la matemática Bruno D'Amore recoge, ilustra y comenta (siempre críticamente) todos estos estudios, proponiendo Hipótesis personales con el único fin de ayudar a los docentes a entender siempre más y en profundidad esta problemática ofreciendo elementos científicos para poder enfrentar este tipo especial de didáctica, de forma concreta.

Los problemas de matemática en la práctica didáctica — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Los problemas de matemática en la práctica didáctica», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

• VII tipo: aprendizaje de reglas. Entre tanto se debe aclarar qué se entiende por “regla”. Se puede pasar de reglas sencillas a reglas muy complejas. Las primeras se pueden simplificar mediante frases en las que se den condiciones a respetar (por ejemplo: «En alemán el artículo determinativo “die” acompaña un sustantivo femenino»). En este caso, se trata de una asociación verbal que comunica una idea que se debe tener presente como regla. O sea: no basta con saber repetir la concatenación verbal para poder decir que se ha aprendido la regla; a lo sumo se sabrá expresar la regla. Ocurre saberla aplicar en un cierto número de ejemplos significativos. Por lo tanto, una regla es una cadena de dos o más conceptos. Ésta puede ser expresada por medio de formulaciones como «Si A entonces B» («Si hay un sustantivo femenino, entonces debo precederlo de “die”»). A propósito del estilo más eficaz para aprender reglas, hay quien afirma que consiste en dar la regla en modo explícito y luego pedir que se use en varios ejemplos; otros en cambio sugieren el procedimiento inductivo inverso: dar ejemplos a partir de los cuales se pueda obtener la regla (proceso de descubrimiento). Los segundos temen que se puedan utilizar formulaciones verbales como atajos y que en lugar de cadenas conceptuales se llegue a obtener solo cadenas verbales. (El ejemplo clásico es aquel del estudiante que sabe “decir” la regla con palabras, pero que no sabe aplicarla en un caso concreto).

• VIII tipo: problem solving. Adquiridas las reglas, ya hemos visto en que sentido el ser humano pude resolver problemas. Por lo tanto, aceptando esta escala, se trata del aprendizaje más elevado y significativo. La acción de resolver un problema se concluye, en estos casos, en un aprendizaje realmente sustancial. La mutación de las capacidades del individuo es tan claro y explícito como en cada uno de los otros tipos de aprendizaje. El aprendizaje mediante problem solving lleva a nuevas capacidades del pensamiento.

Los ocho tipos de aprendizaje van, en la escala proporcionada por Gagné (1973), del más simple al más complejo y completo; y cada uno es prerrequisito para el o los sucesivo/s (aunque se puede hacer directamente una distinción, V tipo, a través de estímulo/respuesta, I y II tipo). Los estudios al respecto son tan vastos y profundos que no me puedo ni limitarme a recordarlos (remito a los textos citados sucesivamente, que son ricos en bibliografía pertinente). Termino entonces confesando a los lectores que expuse, en esta sección, una teoría casi ingenua, básica, no la más moderna; lo que es suficiente para nuestro objetivo (actualmente, por ejemplo, no se acepta esta tipología lineal, sino que se prefiere una más ramificada). En las indicaciones bibliográficas aconsejaré lecturas mucho más actualizadas sobre estos fascinantes temas y volveré sobre este argumento más adelante.

En el caso particular de la Matemática, los tipos que más nos interesan siguiendo las mismas fuentes son:

• Tipos I y II: señales y S/R. Este tipo de aprendizaje parece ser la base de la adquisición de ideas y conceptos matemáticos sucesivos de gran importancia. Es sobre estos tipos de aprendizaje que nos debemos basar para entender el interesante fenómeno por el cual, aún en edad preescolar e incluso antes del kínder, el niño aprende Matemática, tanto así que hoy en día los programas de Matemática de la escuela primaria en todo el mundo sugieren no subestimar las competencias matemáticas precedentes de los niños, sino valorizarlas y basar en ellas las nuevas ideas que se busca formar. Un análisis de las “capacidades matemáticas básicas” (para caracterizarlas, en el pasado, sugerí un sustantivo bastante afortunado: “protomatemática”) es una actividad intelectual muy estimulante. Se pueden añadir los nombres de los números, los nombres de algunas figuras recurrentes en geometría, la actividad de imitar dibujos con el lápiz, la denominación de la sucesión de los números naturales, etc. Cabe precisar que ninguno de estos aprendizajes es “adulto”, completo o preciso. Por ejemplo, no es seguro que los nombres de los números correspondan exactamente a los números mostrados (un caso común es el del niño que muestra tres dedos y dice «Dos»); no es seguro que el nombre de una figura sea el que un adulto diría (un caso común : el bloque con forma de triángulo es llamado “techo” por la función que cumple en la construcción de las casitas); la sucesión de los números puede ser correcta en términos de ritmo pero avanzar saltuariamente en cuanto al nombre de los números (uno, dos, tres, seis, nueve, […]). Sin embargo, en la base de cada uno de estos aprendizajes, hay una respuesta de tipo matemático importante provocada por señales y estímulos. Por ejemplo, en la base de la sucesión de los números, aun siendo incompleta, hay una consciencia confusa que se está consolidando:

• cada número tiene su propio nombre;

• cada número tiene un sucesivo bien determinado;

• se empieza con uno;

Empezando con un número bien definido como primero, cada uno de los demás se obtiene adicionando una unidad.

• Tipo III: concatenación. Al contrario de lo que se piensa, el aprendizaje por concatenación no verbal está presente como fundamento de adquisiciones importantes en Matemática, relacionadas, por ejemplo, con la escritura al hacerse dueño de letras, símbolos y figuras geométricas.

• Tipo IV: asociación o secuencias verbales. En este caso, viene inmediatamente a la mente la secuencia de los números naturales de la que hablé anteriormente. Sin embargo, mientras precedentemente no hablé más que de un hecho fonético, aquí la interiorización es tal que se puede hablar del aprendizaje de la secuencia (nótese: aunque ésta sea incompleta). Esto juega un rol importante en el aprendizaje matemático del niño; por ejemplo, el momento en el que el niño ve 6 objetos y usa el número cardinal 6. Esto puede darse:

• a simple vista; en tal caso, parecen tener un rol una o más configuraciones particulares (estudiadas por la psicología de la forma, la Gestalt; retomaré este tema ampliamente más adelante);

• por conteo: 1, 2, 3, 4, 5, 6, donde el último número ordinal es el número cardinal del conteo. En este caso, los niños tienen diferentes estilos. Hay quien dice el sustantivo 6 con un tono diferente, casi de descubrimiento. Hay quien cuenta hasta 6 y luego repite el número 6. El tipo IV no se limita solamente a los primeros años de vida del niño, por el contrario, permanece en el tiempo y lo acompaña durante su vida de (…) aprendiz de Matemática. Aprender los signos de las operaciones, las letras que representan elementos geométricos, los nombres de figuras jamás vistas, etc., todo lo que está relacionado con este mismo tipo de aprendizaje, no obstante más consciente.

• Tipo V: distinción y desambiguación. Se trata de otro tipo de aprendizaje que acompaña al alumno por un tiempo largo, iniciando muy temprano. Está presente, por ejemplo, en el campo numérico cuando se reconoce la diferencia entre un conjunto de 3 o de 5 canicas, más por percepción (el modo en el que las canicas están agrupadas, o la forma que toman los dos conjuntos) que por conteo explícito y, aunque aparentemente trivial, la distinción entre los signos gráficos que indican las letras (puede ser sorprendente, pero tal distinción se empieza a desarrollar en niños a partir de los 3 años y generalmente es mucho más sólida en niños de 5 años). En edades más avanzadas, las distinciones notables relacionadas con hechos formales son aquellas gráficas: la posición de los signos de las fracciones y de los exponentes con respecto a la base, la distinción entre los niveles de los paréntesis (redondos, angulares, corchetes), etc. Puede parecer superficial, pero en la base del aprendizaje de nuevos signos matemáticos y sus funciones específicas siempre hay una distinción: pasarla por alto, por considerarla obvia, puede ser (es) un grave error didáctico.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Los problemas de matemática en la práctica didáctica»

Представляем Вашему вниманию похожие книги на «Los problemas de matemática en la práctica didáctica» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Los problemas de matemática en la práctica didáctica»

Обсуждение, отзывы о книге «Los problemas de matemática en la práctica didáctica» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x