Daniel J. Duffy - Numerical Methods in Computational Finance

Здесь есть возможность читать онлайн «Daniel J. Duffy - Numerical Methods in Computational Finance» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Numerical Methods in Computational Finance: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Numerical Methods in Computational Finance»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book is a detailed and step-by-step introduction to the mathematical foundations of ordinary and partial differential equations, their approximation by the finite difference method and applications to computational finance. The book is structured so that it can be read by beginners, novices and expert users.
Part A Mathematical Foundation for One-Factor Problems
Chapters 1 to 7 introduce the mathematical and numerical analysis concepts that are needed to understand the finite difference method and its application to computational finance.
Part B Mathematical Foundation for Two-Factor Problems
Chapters 8 to 13 discuss a number of rigorous mathematical techniques relating to elliptic and parabolic partial differential equations in two space variables. In particular, we develop strategies to preprocess and modify a PDE before we approximate it by the finite difference method, thus avoiding ad-hoc and heuristic tricks.
Part C The Foundations of the Finite Difference Method (FDM)
Chapters 14 to 17 introduce the mathematical background to the finite difference method for initial boundary value problems for parabolic PDEs. It encapsulates all the background information to construct stable and accurate finite difference schemes.
Part D Advanced Finite Difference Schemes for Two-Factor Problems
Chapters 18 to 22 introduce a number of modern finite difference methods to approximate the solution of two factor partial differential equations. This is the only book we know of that discusses these methods in any detail.
Part E Test Cases in Computational Finance
Chapters 23 to 26 are concerned with applications based on previous chapters. We discuss finite difference schemes for a wide range of one-factor and two-factor problems.
This book is suitable as an entry-level introduction as well as a detailed treatment of modern methods as used by industry quants and MSc/MFE students in finance. The topics have applications to numerical analysis, science and engineering.
More on computational finance and the author’s online courses, see www.datasim.nl.

Numerical Methods in Computational Finance — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Numerical Methods in Computational Finance», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

In general, we define:

(5.22) In the case where A is positive definite we can compute the norm of Q as - фото 704

In the case where A is positive definite, we can compute the norm of Q as follows:

Numerical Methods in Computational Finance - изображение 705

This result was proved in Kellogg (1964), and it is an important lemma to prove unconditional stability of splitting schemes. In the same way it is possible to show that Numerical Methods in Computational Finance - изображение 706.

Appendix : The Schrödinger Equation

We discuss the time-dependent one-dimensional Schrödinger PDE and its finite difference approximation by the Euler, fully implicit, and Crank–Nicolson schemes. We prove that only the Crank–Nicolson scheme is unitary (preserves norms) as discussed in Section 5.6.3in the context of unitary matrices.

In some cases and applications we are interested in solving linear systems of equations where the coefficients are complex-valued. We take the example of the time-dependent linear Schrödinger equation in one dimension:

(5.23) where Equation 523describes the scattering of a onedimensional wave - фото 707

where:

Equation 523describes the scattering of a onedimensional wave packet by the - фото 708

Equation (5.23)describes the scattering of a one-dimensional wave packet by the potential картинка 709. We have assumed for convenience that Planck's constant in this example We rewrite Equation 523in the equivalent form 524 The - фото 710in this example.

We rewrite Equation (5.23)in the equivalent form:

(5.24) The operator H is called the Hamiltonian operator and it determines the time - фото 711

The operator H is called the Hamiltonian operator , and it determines the time variation of the system. We are now interested in approximating Equation (5.24)using finite difference schemes. To this end, the explicit Euler FTCS scheme is given by:

(5.25) while the implicit Euler BTCS scheme is given by or 526 - фото 712

while the implicit Euler BTCS scheme is given by:

Numerical Methods in Computational Finance - изображение 713

or

(5.26) Numerical Methods in Computational Finance - изображение 714

or

Scheme 525is unstable while 526is stable However neither scheme is - фото 715

Scheme (5.25)is unstable, while (5.26)is stable. However, neither scheme is unitary in the sense of the original problem; that is, the total probability of finding the particle somewhere is 1:

(5.27) A remedy for this is to use the Cayley form this is essentially the - фото 716

A remedy for this is to use the Cayley form (this is essentially the Crank–Nicolson scheme):

or 528 This scheme is unitary you can check this by a bit of arithmetic - фото 717

or

(5.28) This scheme is unitary you can check this by a bit of arithmetic using complex - фото 718

This scheme is unitary; you can check this by a bit of arithmetic using complex arithmetic.

The solution of (5.24)is:

(5.29) and the solution of 528is 530 We can see that 530is the 11 Padé - фото 719

and the solution of (5.28)is:

(5.30) We can see that 530is the 11 Padé approximant to the exponential - фото 720

We can see that (5.30)is the (1,1) Padé approximant to the exponential function. Its absolute value is 1.

5.8 SUMMARY AND CONCLUSIONS

Matrix theory is too important to be ignored or given short shrift in any book on numerical analysis and its applications. For this reason, we gave a reasonably detailed exposition of matrix theory as a companion to the other chapters in this book (and it could possibly be a companion to other books).

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Numerical Methods in Computational Finance»

Представляем Вашему вниманию похожие книги на «Numerical Methods in Computational Finance» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Numerical Methods in Computational Finance»

Обсуждение, отзывы о книге «Numerical Methods in Computational Finance» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x