A. K. Md. Ehsanes Saleh - Rank-Based Methods for Shrinkage and Selection
Здесь есть возможность читать онлайн «A. K. Md. Ehsanes Saleh - Rank-Based Methods for Shrinkage and Selection» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.
- Название:Rank-Based Methods for Shrinkage and Selection
- Автор:
- Жанр:
- Год:неизвестен
- ISBN:нет данных
- Рейтинг книги:3 / 5. Голосов: 1
-
Избранное:Добавить в избранное
- Отзывы:
-
Ваша оценка:
- 60
- 1
- 2
- 3
- 4
- 5
Rank-Based Methods for Shrinkage and Selection: краткое содержание, описание и аннотация
Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Rank-Based Methods for Shrinkage and Selection»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.
A practical and hands-on guide to the theory and methodology of statistical estimation based on rank Rank-Based Methods for Shrinkage and Selection: With Application to Machine Learning
Rank-Based Methods for Shrinkage and Selection
Rank-Based Methods for Shrinkage and Selection — читать онлайн ознакомительный отрывок
Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Rank-Based Methods for Shrinkage and Selection», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.
Интервал:
Закладка:
Rank-Based Methods for Shrinkage and Selection
With Application to Machine Learning
A. K. Md. Ehsanes Saleh Carleton University, Ottawa, Canada
Mohammad Arashi Ferdowsi University of Mashhad, Mashhad, Iran
Resve A. Saleh University of British Columbia, Vancouver, Canada
Mina Norouzirad Center for Mathematics and Application of NOVA University Lisbon, Lisbon, Portugal
This edition first published 2022
© 2022 John Wiley and Sons, Inc.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.
The right of A.K. Md. Ehsanes Saleh, Mohammad Arashi, Mina Norouzirad, and Resve A. Saleh to be identified as the authors of this work has been asserted in accordance with law.
Registered Office
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA
Editorial Office
111 River Street, Hoboken, NJ 07030, USA
For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.
Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content that appears in standard print versions of this book may not be available in other formats.
Limit of Liability/Disclaimer of Warranty
The contents of this work are intended to further general scientific research, understanding, and discussion only and are not intended and should not be relied upon as recommending or promoting scientific method, diagnosis, or treatment by physicians for any particular patient. In view of ongoing research, equipment modifications, changes in governmental regulations, and the constant flow of information relating to the use of medicines, equipment, and devices, the reader is urged to review and evaluate the information provided in the package insert or instructions for each medicine, equipment, or device for, among other things, any changes in the instructions or indication of usage and for added warnings and precautions. While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.
Library of Congress Cataloging-in-Publication Data
ISBN 9781119625391
Cover image: [Production Editor to insert]
Cover design by [Production Editor to insert]
Set in 9.5/12.5pt STIXTwoText by Integra Software Services Pvt. Ltd, Pondicherry, India
We dedicate this book to
Shahidara Saleh
Reihaneh Soleimani, Elena Arashi
Lynn Hilchie Saleh
Abbas Ali Norouzirad, Fereshteh Arefian
Contents
1 Cover
2 Title page Rank-Based Methods for Shrinkage and Selection With Application to Machine Learning A. K. Md. Ehsanes Saleh Carleton University, Ottawa, Canada Mohammad Arashi Ferdowsi University of Mashhad, Mashhad, Iran Resve A. Saleh University of British Columbia, Vancouver, Canada Mina Norouzirad Center for Mathematics and Application of NOVA University Lisbon, Lisbon, Portugal
3 Copyright
4 Dedication
5 Contents in Brief
6 List of Figures
7 List of Tables
8 Foreword
9 Preface
10 1 Introduction to Rank-based Regression 1.1 Introduction1.2 Robustness of the Median1.2.1 Mean vs. Median1.2.2 Breakdown Point1.2.3 Order and Rank Statistics1.3 Simple Linear Regression1.3.1 Least Squares Estimator (LSE)1.3.2 Theil’s Estimator1.3.3 Belgium Telephone Data Set1.3.4 Estimation and Standard Error Comparison1.4 Outliers and their Detection1.4.1 Outlier Detection1.5 Motivation for Rank-based Methods1.5.1 Effect of a Single Outlier1.5.2 Using Rank for the Location Model1.5.3 Using Rank for the Slope1.6 The Rank Dispersion Function1.6.1 Ranking and Scoring Details1.6.2 Detailed Procedure for R-estimation1.7 Shrinkage Estimation and Subset Selection1.7.1 Multiple Linear Regression using Rank1.7.2 Penalty Functions1.7.3 Shrinkage Estimation1.7.4 Subset Selection1.7.5 Blended Approaches1.8 Summary1.9 Problems
11 2 Characteristics of Rank-based Penalty Estimators 2.1 Introduction2.2 Motivation for Penalty Estimators2.3 Multivariate Linear Regression2.3.1 Multivariate Least Squares Estimation2.3.2 Multivariate R-estimation2.3.3 Multicollinearity2.4 Ridge Regression2.4.1 Ridge Applied to Least Squares Estimation2.4.2 Ridge Applied to Rank Estimation2.5 Example: Swiss Fertility Data Set2.5.1 Estimation and Standard Errors2.5.2 Parameter Variance using Bootstrap2.5.3 Reducing Variance using Ridge2.5.4 Ridge Traces2.6 Selection of Ridge Parameter λ 22.6.1 Quadratic Risk2.6.2 K-fold Cross-validation Scheme2.7 LASSO and aLASSO2.7.1 Subset Selection2.7.2 Least Squares with LASSO2.7.3 The Adaptive LASSO and its Geometric Interpretation2.7.4 R-estimation with LASSO and aLASSO2.7.5 Oracle Properties2.8 Elastic Net (Enet)2.8.1 Naive Enet2.8.2 Standard Enet2.8.3 Enet in Machine Learning2.9 Example: Diabetes Data Set2.9.1 Model Building with R-aEnet2.9.2 MSE vs. MAE2.9.3 Model Building with LS-Enet2.10 Summary2.11 Problems
12 3 Location and Simple Linear Models 3.1 Introduction3.2 Location Estimators and Testing3.2.1 Unrestricted R–estimator of θ 3.2.2 Restricted R-estimator of θ 3.3 Shrinkage R-estimators of Location3.3.1 Overview of Shrinkage R-estimators of θ 3.3.2 Derivation of the Ridge-type R-estimator3.3.3 Derivation of the LASSO-type R-estimator3.3.4 General Shrinkage R-estimators of θ 3.4 Ridge-type R-estimator of θ 3.5 Preliminary Test R-estimator of θ 3.5.1 Optimum Level of Significance of PTRE3.6 Saleh-type R-estimators3.6.1 Hard-Threshold R-estimator of θ 3.6.2 Saleh-type R-estimator of θ 3.6.3 Positive-rule Saleh-type (LASSO-type) R-estimator of θ 3.6.4 Elastic Net-type R-estimator of θ 3.7 Comparative Study of the R-estimators of Location3.8 Simple Linear Model3.8.1 Restricted R-estimator of Slope3.8.2 Shrinkage R-estimator of Slope3.8.3 Ridge-type R-estimation of Slope3.8.4 Hard-Threshold R-estimator of Slope3.8.5 Saleh-type R-estimator of Slope3.8.6 Positive-rule Saleh-type (LASSO-type) R-estimator of Slope3.8.7 The Adaptive LASSO (aLASSO-type) R-estimator3.8.8 nEnet-type R-estimator of Slope3.8.9 Comparative Study of R-estimators of Slope3.9 Summary3.10 Problems
Читать дальшеИнтервал:
Закладка:
Похожие книги на «Rank-Based Methods for Shrinkage and Selection»
Представляем Вашему вниманию похожие книги на «Rank-Based Methods for Shrinkage and Selection» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.
Обсуждение, отзывы о книге «Rank-Based Methods for Shrinkage and Selection» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.