Daniel J. Duffy - Numerical Methods in Computational Finance

Здесь есть возможность читать онлайн «Daniel J. Duffy - Numerical Methods in Computational Finance» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Numerical Methods in Computational Finance: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Numerical Methods in Computational Finance»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book is a detailed and step-by-step introduction to the mathematical foundations of ordinary and partial differential equations, their approximation by the finite difference method and applications to computational finance. The book is structured so that it can be read by beginners, novices and expert users.
Part A Mathematical Foundation for One-Factor Problems
Chapters 1 to 7 introduce the mathematical and numerical analysis concepts that are needed to understand the finite difference method and its application to computational finance.
Part B Mathematical Foundation for Two-Factor Problems
Chapters 8 to 13 discuss a number of rigorous mathematical techniques relating to elliptic and parabolic partial differential equations in two space variables. In particular, we develop strategies to preprocess and modify a PDE before we approximate it by the finite difference method, thus avoiding ad-hoc and heuristic tricks.
Part C The Foundations of the Finite Difference Method (FDM)
Chapters 14 to 17 introduce the mathematical background to the finite difference method for initial boundary value problems for parabolic PDEs. It encapsulates all the background information to construct stable and accurate finite difference schemes.
Part D Advanced Finite Difference Schemes for Two-Factor Problems
Chapters 18 to 22 introduce a number of modern finite difference methods to approximate the solution of two factor partial differential equations. This is the only book we know of that discusses these methods in any detail.
Part E Test Cases in Computational Finance
Chapters 23 to 26 are concerned with applications based on previous chapters. We discuss finite difference schemes for a wide range of one-factor and two-factor problems.
This book is suitable as an entry-level introduction as well as a detailed treatment of modern methods as used by industry quants and MSc/MFE students in finance. The topics have applications to numerical analysis, science and engineering.
More on computational finance and the author’s online courses, see www.datasim.nl.

Numerical Methods in Computational Finance — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Numerical Methods in Computational Finance», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(4.17) картинка 609

Given a non-zero картинка 610, the set of all x satisfying (4.17)forms a subspace of картинка 611. The set of all eigenvectors of T corresponding to the same eigenvalue, together with the zero vector, is called an eigenspace (or the characteristic space) of T associated with that eigenvalue.

Eigenvalues and eigenvectors are important in numerical linear algebra.

4.6 SUMMARY AND CONCLUSIONS

We have given a precise and compact introduction to finite-dimensional vector spaces and linear transformations between vector spaces. We introduce the notation and jargon associated with the topic, and it forms the basis for many applications. In particular, it clears the way for a study of matrix theory and numerical linear algebra.

We recommend Shilov (1977) as an elegant introduction to linear algebra.

CHAPTER 5 Guide to Matrix Theory and Numerical Linear Algebra

If you can't solve a problem, then there is an easier problem you can solve: find it .

Georg Polya

5.1 INTRODUCTION AND OBJECTIVES

The main goal of this chapter is to introduce matrices: what they are and how to create and use them, as well as classifying matrices based on some of their intrinsic and computed properties. This is not a book on matrix theory, but we think that it is important to introduce matrices upfront and not to relegate them to a two-page appendix at the end of the book. We prefer to inform the reader of the prerequisites in the first part of the book rather than at the end when all the other chapters have been discussed.

We continue with this topic in Chapter 6when we discuss the role of matrices in numerical linear algebra and their integration with finite difference schemes for ordinary differential equations.

5.2 FROM VECTOR SPACES TO MATRICES

We continue with the topics in Chapter 4and show how matrices are representations of linear operators.

5.2.1 Sums and Scalar Products of Linear Transformations

We discuss two binary operators on the set картинка 612where V and W are vector spaces, namely the sum of two linear transformations and multiplication of a linear transformation by a scalar. Each operator produces a new linear transformation.

Definition 5.1The sum of two linear transformations Numerical Methods in Computational Finance - изображение 613is a mapping from V to W and is defined by:

(5.1) Numerical Methods in Computational Finance - изображение 614

Definition 5.2The scalar product of a linear transformation Numerical Methods in Computational Finance - изображение 615and a scalar Numerical Methods in Computational Finance - изображение 616is defined by:

(5.2) Numerical Methods in Computational Finance - изображение 617

Definition 5.3Let Numerical Methods in Computational Finance - изображение 618, Numerical Methods in Computational Finance - изображение 619. Then the composition of and is defined by 53 We check that the composition is a lin - фото 620and is defined by 53 We check that the composition is a linear transformation - фото 621is defined by:

(5.3) We check that the composition is a linear transformation as follows 53 - фото 622

We check that the composition is a linear transformation as follows:

53 INNER PRODUCT SPACES An inner product a generalisation of dot product - фото 623

5.3 INNER PRODUCT SPACES

An inner product (a generalisation of dot product from high school calculus) on a real vector space V is a scalar-valued function on the Cartesian product of V with itself having the following axioms:

(5.4) Inner products on complex vector spaces are also possible but a discussion is - фото 624

Inner products on complex vector spaces are also possible, but a discussion is outside the scope of this chapter. We also note that inner products are sometimes written as картинка 625(for example, in physics) instead of where x and y are vectors For the specific case of n dimensional vectors we - фото 626where x and y are vectors. For the specific case of n -dimensional vectors we usually write the inner product as follows:

(5.5) where is the transpose of vector This latter notation is comm - фото 627

where картинка 628is the transpose of vector картинка 629.

This latter notation is common in linear algebra and applications. Of course, more general vector spaces will need the more generic form in axioms (5.4).

An inner product space is a vector space on which an inner product is defined. A finite-dimensional real inner product space is known as a Euclidean space , and a complex inner product space is known as a unitary space . The length of a vector x in Euclidean space is defined to be Numerical Methods in Computational Finance - изображение 630, and the angle between two vectors x and y is given by:

(5.6) We say that two vectors x and y are orthogonal if We immediately see that the - фото 631

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Numerical Methods in Computational Finance»

Представляем Вашему вниманию похожие книги на «Numerical Methods in Computational Finance» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Numerical Methods in Computational Finance»

Обсуждение, отзывы о книге «Numerical Methods in Computational Finance» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x