Daniel J. Duffy - Numerical Methods in Computational Finance

Здесь есть возможность читать онлайн «Daniel J. Duffy - Numerical Methods in Computational Finance» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Numerical Methods in Computational Finance: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Numerical Methods in Computational Finance»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book is a detailed and step-by-step introduction to the mathematical foundations of ordinary and partial differential equations, their approximation by the finite difference method and applications to computational finance. The book is structured so that it can be read by beginners, novices and expert users.
Part A Mathematical Foundation for One-Factor Problems
Chapters 1 to 7 introduce the mathematical and numerical analysis concepts that are needed to understand the finite difference method and its application to computational finance.
Part B Mathematical Foundation for Two-Factor Problems
Chapters 8 to 13 discuss a number of rigorous mathematical techniques relating to elliptic and parabolic partial differential equations in two space variables. In particular, we develop strategies to preprocess and modify a PDE before we approximate it by the finite difference method, thus avoiding ad-hoc and heuristic tricks.
Part C The Foundations of the Finite Difference Method (FDM)
Chapters 14 to 17 introduce the mathematical background to the finite difference method for initial boundary value problems for parabolic PDEs. It encapsulates all the background information to construct stable and accurate finite difference schemes.
Part D Advanced Finite Difference Schemes for Two-Factor Problems
Chapters 18 to 22 introduce a number of modern finite difference methods to approximate the solution of two factor partial differential equations. This is the only book we know of that discusses these methods in any detail.
Part E Test Cases in Computational Finance
Chapters 23 to 26 are concerned with applications based on previous chapters. We discuss finite difference schemes for a wide range of one-factor and two-factor problems.
This book is suitable as an entry-level introduction as well as a detailed treatment of modern methods as used by industry quants and MSc/MFE students in finance. The topics have applications to numerical analysis, science and engineering.
More on computational finance and the author’s online courses, see www.datasim.nl.

Numerical Methods in Computational Finance — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Numerical Methods in Computational Finance», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

We give a precise overview of the operations that can be performed on matrices. We mention that they subsume operations on one-dimensional vectors because the latter can be viewed as matrices with one column (or with one row, depending on the context).

The notation and operations for vectors are:

(5.13) and for rectangular matrices 514 Some special cases of matrices are Row - фото 658

and for rectangular matrices:

(5.14) Some special cases of matrices are Row matrix has one row row vector - фото 659

Some special cases of matrices are:

Row matrix: has one row (row vector).

Column matrix: has one column (column vector).

Zero matrix: all entries have the value zero.

Diagonal matrix: all entries zero except those on main diagonal.

Identity matrix: diagonal matrix all of whose diagonal elements == 1.

Matrix operations are:

(5.15) Matrix addition Scalar multiplication Matrix multiplication Transpose of a - фото 660

Matrix addition:

Scalar multiplication:

Matrix multiplication:

Transpose of a matrix AA new matrix obtained by writing the rows of A as columns.Applicable to rectangular matrices:

1 Matrix trace (the sum of the diagonal element of a square matrix):

An example of matrix multiplication is:

56 ESSENTIAL MATRIX TYPES In this section we classify matrices based on some - фото 661

5.6 ESSENTIAL MATRIX TYPES

In this section we classify matrices based on some fundamental (computed) property. These properties are used in various areas of numerical analysis and its applications. It is then a useful reference to group them as we do here. In general, matrices can have real or complex values. In the latter case we recall complex conjugation :

In many cases we are concerned with square matrices with real values 561 - фото 662

In many cases we are concerned with square matrices with real values.

5.6.1 Nilpotent and Related Matrices

A nilpotent matrix A is a square matrix such that картинка 663for some positive integer p . It is said to be of index p if p the least positive integer for which Numerical Methods in Computational Finance - изображение 664. For example, the matrix:

Numerical Methods in Computational Finance - изображение 665

is nilpotent with index 2. More generally, a triangular matrix of size n with zeros along the main diagonal is nilpotent with index For example the follow matrix is nilpotent with index 3 The determinant - фото 666. For example, the follow matrix is nilpotent with index 3:

The determinant and trace of a nilpotent matrix are always zero Thus such - фото 667

The determinant and trace of a nilpotent matrix are always zero. Thus, such matrices are not invertible. However, and are invertible where N is a nilpotent matrix 516 - фото 668and are invertible where N is a nilpotent matrix 516 where I is the identity - фото 669are invertible where N is a nilpotent matrix:

(5.16) where I is the identity matrix Since there are only finitely many nonzero - фото 670

where I is the identity matrix. Since there are only finitely many non-zero terms, we see that both sums converge.

An idempotent matrix A is one for which Examples are Idempotent matrices arise in regression analysis and - фото 671. Examples are:

Idempotent matrices arise in regression analysis and econometrics for example - фото 672

Idempotent matrices arise in regression analysis and econometrics, for example in ordinary least squares problems, in particular when estimating sums of squared residuals.

An involutory matrix is one that is its own inverse:

An example is For example the Pauli matrices are involutory - фото 673

An example is:

For example the Pauli matrices are involutory 562 Normal Matrices We - фото 674

For example, the Pauli matrices are involutory:

562 Normal Matrices We introduce the important class of normal matrices by - фото 675

5.6.2 Normal Matrices

We introduce the important class of normal matrices by introducing some prerequisite notation. The transpose of a real картинка 676matrix is an matrix formed by exchanging the rows and columns of A In the case of a - фото 677matrix formed by exchanging the rows and columns of A :

In the case of a complex matrix A the Hermitian transpose is the complex - фото 678

In the case of a complex matrix A , the Hermitian transpose is the complex conjugate transpose of A :

We are ready to give some more definitions of special kinds of matrices - фото 679

We are ready to give some more definitions of special kinds of matrices:

Normal:

Hermitian:

Skew-Hermitian:

Symmetric (real) matrix:

An example of a Hermitian (and hence normal matrix) is:

Numerical Methods in Computational Finance - изображение 680

5.6.3 Unitary and Orthogonal Matrices

A matrix U is unitary if its inverse equals its Hermitian transpose:

Numerical Methods in Computational Finance - изображение 681

Unitary matrices are normal: Numerical Methods in Computational Finance - изображение 682Furthermore, given two vectors, multiplication by U preserves inner products Numerical Methods in Computational Finance - изображение 683. Unitary matrices are important in quantum mechanics because they preserve norms and thus probability amplitudes. See the Appendix in this chapter.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Numerical Methods in Computational Finance»

Представляем Вашему вниманию похожие книги на «Numerical Methods in Computational Finance» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Numerical Methods in Computational Finance»

Обсуждение, отзывы о книге «Numerical Methods in Computational Finance» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x