Daniel J. Duffy - Numerical Methods in Computational Finance

Здесь есть возможность читать онлайн «Daniel J. Duffy - Numerical Methods in Computational Finance» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Numerical Methods in Computational Finance: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Numerical Methods in Computational Finance»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book is a detailed and step-by-step introduction to the mathematical foundations of ordinary and partial differential equations, their approximation by the finite difference method and applications to computational finance. The book is structured so that it can be read by beginners, novices and expert users.
Part A Mathematical Foundation for One-Factor Problems
Chapters 1 to 7 introduce the mathematical and numerical analysis concepts that are needed to understand the finite difference method and its application to computational finance.
Part B Mathematical Foundation for Two-Factor Problems
Chapters 8 to 13 discuss a number of rigorous mathematical techniques relating to elliptic and parabolic partial differential equations in two space variables. In particular, we develop strategies to preprocess and modify a PDE before we approximate it by the finite difference method, thus avoiding ad-hoc and heuristic tricks.
Part C The Foundations of the Finite Difference Method (FDM)
Chapters 14 to 17 introduce the mathematical background to the finite difference method for initial boundary value problems for parabolic PDEs. It encapsulates all the background information to construct stable and accurate finite difference schemes.
Part D Advanced Finite Difference Schemes for Two-Factor Problems
Chapters 18 to 22 introduce a number of modern finite difference methods to approximate the solution of two factor partial differential equations. This is the only book we know of that discusses these methods in any detail.
Part E Test Cases in Computational Finance
Chapters 23 to 26 are concerned with applications based on previous chapters. We discuss finite difference schemes for a wide range of one-factor and two-factor problems.
This book is suitable as an entry-level introduction as well as a detailed treatment of modern methods as used by industry quants and MSc/MFE students in finance. The topics have applications to numerical analysis, science and engineering.
More on computational finance and the author’s online courses, see www.datasim.nl.

Numerical Methods in Computational Finance — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Numerical Methods in Computational Finance», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

4.4 LINEAR INDEPENDENCE AND BASES

We are now interested in finding a minimal subspace U of independent vectors containing a set X ( U contains X ) such that any vector in X can be written as a linear combination of these vectors. In this case we say that X spans U . We are particularly interested in the case Numerical Methods in Computational Finance - изображение 545, that is subsets of Numerical Methods in Computational Finance - изображение 546that span Numerical Methods in Computational Finance - изображение 547itself. Such subsets always exist; for example Numerical Methods in Computational Finance - изображение 548has this property. We take an example in n -dimensional space. The vectors:

(4.14) Numerical Methods in Computational Finance - изображение 549

span Numerical Methods in Computational Finance - изображение 550because each element can be written as a linear combination:

Numerical Methods in Computational Finance - изображение 551

Furthermore, any proper subset of Numerical Methods in Computational Finance - изображение 552cannot span Numerical Methods in Computational Finance - изображение 553.

Another example is the vector space generated by polynomials of the form of Equation (4.11)generated the monomials Numerical Methods in Computational Finance - изображение 554. It is clear that any proper subset of this set spans a proper subspace of картинка 555; it cannot span картинка 556itself.

Definition 4.1A vector картинка 557is linearly dependent on a given subset X of картинка 558if x belongs to the subspace generated by the set X .

Definition 4.2A subset X of картинка 559is called a linearly dependent set if it contains at least one element that is linearly dependent on the others.

Definition 4.3A set is called linearly independent if it is not linearly dependent.

The elements Numerical Methods in Computational Finance - изображение 560as defined in Equation (4.14)form a linearly independent set in and adjoining any other vector to this set makes it linearly dependent - фото 561, and adjoining any other vector to this set makes it linearly dependent.

Summarising, the criterion for linear independence is:

(4.15) Definition 44A basis of a vector space is any linearly independent subset of - фото 562

Definition 4.4A basis of a vector space картинка 563is any linearly independent subset of картинка 564which has the property that it spans картинка 565.

Definition 4.5The dimension n of картинка 566(denoted by dim V ) is the supremum of the (cardinal) numbers of elements in the linearly independent subsets of картинка 567.

картинка 568is said to be finite-dimensional if n is finite. In this case there exist linearly independent subsets with n elements but no linearly independent subsets with картинка 569elements.

4.5 LINEAR TRANSFORMATIONS

Mappings between vector spaces are at least as interesting as vector spaces themselves. An important property of linear transformations is that they map linearly dependent subsets into linearly dependent subsets. An interesting remark is that the set of all linear transformations between two given vector spaces is itself a vector space.

The mapping:

Numerical Methods in Computational Finance - изображение 570

is called a linear transformation from to if 416 We see immediately that the zero element in - фото 571to if 416 We see immediately that the zero element in is mappe - фото 572if:

(4.16) We see immediately that the zero element in is mapped to the zero element in - фото 573

We see immediately that the zero element in картинка 574is mapped to the zero element in Some examples of linear transformations are A more general linear - фото 575.

Some examples of linear transformations are:

A more general linear transformation in fact a vectorvalued transformation - фото 576

A more general linear transformation (in fact, a vector-valued transformation ) is:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Numerical Methods in Computational Finance»

Представляем Вашему вниманию похожие книги на «Numerical Methods in Computational Finance» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Numerical Methods in Computational Finance»

Обсуждение, отзывы о книге «Numerical Methods in Computational Finance» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x