Daniel J. Duffy - Numerical Methods in Computational Finance

Здесь есть возможность читать онлайн «Daniel J. Duffy - Numerical Methods in Computational Finance» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Numerical Methods in Computational Finance: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Numerical Methods in Computational Finance»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book is a detailed and step-by-step introduction to the mathematical foundations of ordinary and partial differential equations, their approximation by the finite difference method and applications to computational finance. The book is structured so that it can be read by beginners, novices and expert users.
Part A Mathematical Foundation for One-Factor Problems
Chapters 1 to 7 introduce the mathematical and numerical analysis concepts that are needed to understand the finite difference method and its application to computational finance.
Part B Mathematical Foundation for Two-Factor Problems
Chapters 8 to 13 discuss a number of rigorous mathematical techniques relating to elliptic and parabolic partial differential equations in two space variables. In particular, we develop strategies to preprocess and modify a PDE before we approximate it by the finite difference method, thus avoiding ad-hoc and heuristic tricks.
Part C The Foundations of the Finite Difference Method (FDM)
Chapters 14 to 17 introduce the mathematical background to the finite difference method for initial boundary value problems for parabolic PDEs. It encapsulates all the background information to construct stable and accurate finite difference schemes.
Part D Advanced Finite Difference Schemes for Two-Factor Problems
Chapters 18 to 22 introduce a number of modern finite difference methods to approximate the solution of two factor partial differential equations. This is the only book we know of that discusses these methods in any detail.
Part E Test Cases in Computational Finance
Chapters 23 to 26 are concerned with applications based on previous chapters. We discuss finite difference schemes for a wide range of one-factor and two-factor problems.
This book is suitable as an entry-level introduction as well as a detailed treatment of modern methods as used by industry quants and MSc/MFE students in finance. The topics have applications to numerical analysis, science and engineering.
More on computational finance and the author’s online courses, see www.datasim.nl.

Numerical Methods in Computational Finance — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Numerical Methods in Computational Finance», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(4.6) Some examples of norms for twodimensional vectors are The following norms - фото 511

Some examples of norms for two-dimensional vectors are:

The following norms for vectors and matrices are used in applications 47 - фото 512

The following norms for vectors and matrices are used in applications:

(4.7) 48 Whereas the norm is a measure of the size of a vector it is also - фото 513

(4.8) Whereas the norm is a measure of the size of a vector it is also possible to - фото 514

Whereas the norm is a measure of the size of a vector, it is also possible to find the distance between two vectors. A natural way to proceed is, given a set X to define a real-valued function on Numerical Methods in Computational Finance - изображение 515called a metric that satisfies for Numerical Methods in Computational Finance - изображение 516:

A space X endowed with a metric d is called a metric space and is denoted by - фото 517

A space X endowed with a metric d is called a metric space and is denoted by ( X , d ).

Examples of metrics are:

1

2 Let X be a non-empty set(4.9)

1 Let X be a set and let be the set of p-integrable Lebesgue functions on X. If , then a metric is:

Norms and metrics are important quantities when proving convergence results in functional and numerical analysis applications.

4.3 SUBSPACES

A non-empty subset X of a vector space картинка 518) is called a vector subspace of картинка 519if X forms a vector space over K with the same addition and scalar multiplication as in картинка 520. For example, let P be the set of polynomials in X with real coefficients, and let polynomial addition and multiplication by real numbers be defined by:

(4.10) Now let be the set of consisting of all polynomials of at most degree - фото 521

Now let картинка 522be the set of consisting of all polynomials of at most degree of the form 411 Then is a subspace of P and it i - фото 523of the form:

(4.11) Numerical Methods in Computational Finance - изображение 524

Then Numerical Methods in Computational Finance - изображение 525is a subspace of P , and it is also a subspace of Numerical Methods in Computational Finance - изображение 526.

We say that a subset X of a vector space Numerical Methods in Computational Finance - изображение 527is said to be closed under addition if whenever Numerical Methods in Computational Finance - изображение 528, then Numerical Methods in Computational Finance - изображение 529. A subset X of a vector space картинка 530is said to be closed under scalar multiplication if whenever картинка 531and картинка 532then картинка 533.

Theorem 4.1A subset X of a vector space is a subspace if and only if 412 An exercise let be any - фото 534is a subspace if and only if:

(4.12) An exercise let be any r elements of a vector space Prove - фото 535

An exercise: let картинка 536be any r elements of a vector space картинка 537. Prove that the set U of all elements of that can be written in the form forms a subspace of We give an exampl - фото 538that can be written in the form forms a subspace of We give an example of a subset X of defi - фото 539forms a subspace of картинка 540.

We give an example of a subset X of defined by 413 It is easily verified that X is a vector space over K - фото 541defined by:

(4.13) It is easily verified that X is a vector space over K but X is not a subspace - фото 542

It is easily verified that X is a vector space over K , but X is not a subspace of because and these two quantities are thus not the same 44 LINEAR - фото 543because:

and these two quantities are thus not the same 44 LINEAR INDEPENDENCE AND - фото 544

and these two quantities are thus not the same!

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Numerical Methods in Computational Finance»

Представляем Вашему вниманию похожие книги на «Numerical Methods in Computational Finance» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Numerical Methods in Computational Finance»

Обсуждение, отзывы о книге «Numerical Methods in Computational Finance» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x