Daniel J. Duffy - Numerical Methods in Computational Finance

Здесь есть возможность читать онлайн «Daniel J. Duffy - Numerical Methods in Computational Finance» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Numerical Methods in Computational Finance: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Numerical Methods in Computational Finance»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book is a detailed and step-by-step introduction to the mathematical foundations of ordinary and partial differential equations, their approximation by the finite difference method and applications to computational finance. The book is structured so that it can be read by beginners, novices and expert users.
Part A Mathematical Foundation for One-Factor Problems
Chapters 1 to 7 introduce the mathematical and numerical analysis concepts that are needed to understand the finite difference method and its application to computational finance.
Part B Mathematical Foundation for Two-Factor Problems
Chapters 8 to 13 discuss a number of rigorous mathematical techniques relating to elliptic and parabolic partial differential equations in two space variables. In particular, we develop strategies to preprocess and modify a PDE before we approximate it by the finite difference method, thus avoiding ad-hoc and heuristic tricks.
Part C The Foundations of the Finite Difference Method (FDM)
Chapters 14 to 17 introduce the mathematical background to the finite difference method for initial boundary value problems for parabolic PDEs. It encapsulates all the background information to construct stable and accurate finite difference schemes.
Part D Advanced Finite Difference Schemes for Two-Factor Problems
Chapters 18 to 22 introduce a number of modern finite difference methods to approximate the solution of two factor partial differential equations. This is the only book we know of that discusses these methods in any detail.
Part E Test Cases in Computational Finance
Chapters 23 to 26 are concerned with applications based on previous chapters. We discuss finite difference schemes for a wide range of one-factor and two-factor problems.
This book is suitable as an entry-level introduction as well as a detailed treatment of modern methods as used by industry quants and MSc/MFE students in finance. The topics have applications to numerical analysis, science and engineering.
More on computational finance and the author’s online courses, see www.datasim.nl.

Numerical Methods in Computational Finance — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Numerical Methods in Computational Finance», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

This chapter took over where Chapter 2left off. We have tried to give a self-contained overview of the analytic properties of scalar ODEs and systems of ODEs as well as their numerical approximation. The topics are important in their own right, and an understanding of them is important in finance applications. We also gave a short introduction to stochastic differential equations (SDEs) in Section 3.4. We discuss SDEs and their relationship with PDEs in Chapter 13.

CHAPTER 4 An Introduction to Finite Dimensional Vector Spaces

There's no sense in being precise when you don't even know what you're talking about .

John von Neumann

4.1 SHORT INTRODUCTION AND OBJECTIVES

This chapter introduces vector spaces of finite dimension. They can be seen as the n -dimensional generalisation of the two- and three-dimensional vectors that we have become accustomed to. In three dimensions, for example, a vector is a 3-tuple Numerical Methods in Computational Finance - изображение 501consisting of three components (elements), and it can be visualised as a directed line from the point (0, 0, 0) to the point Numerical Methods in Computational Finance - изображение 502. In higher dimensions this geometric analogy is lost (unless you are Albert Einstein), and we model vectors as an n -tuple Numerical Methods in Computational Finance - изображение 503of homogeneous components of a certain type (in most cases real or complex variables). In particular, we discuss the following use cases as we progress:

U1: Addition of vectors.

U2: Premultiplication of a vector by a scalar (an element of a field).

U3: Inner products in vector spaces.

U4: Vector space norms.

U5: The distance between two vectors in some norm.

These abstract properties are applicable to a wide range of data structures that we use in numerical analysis and its (many) applications. They can be specialised to cater for specific data structures such as vectors, matrices and tensors (three-dimensional matrices). For this reason we introduce the reader to vector space theory . Studying it will pay dividends in the rest of this book and beyond in the years to come. For example, vector spaces of finite dimension are generalised to infinite-dimensional Hilbert, Banach and Sobolev spaces, a discussion of which is outside the scope of this book.

4.1.1 Notation

This chapter attempts to present a self-contained and focused introduction to the essential concepts and methods for vector spaces of finite dimension. The applications are numerous, for example numerical linear algebra, finite Markov chains, multivariate optimisation, machine and statistical learning, graph theory and finite difference methods, to name just a few. To this end, we summarise the most important syntax and notation that we use throughout the book:

F or K : a field

: set of real and complex numbers, respectively

α, β, a, b : scalars

x, y, z : elements of a vector space

V, W : vector spaces

A, B, M : matrices

: norm in a vector space

: transpose of a vector, matrix

: inverse of a matrix

λ : eigenvalue of a matrix

d(x, y) : distance between vectors x and y

(x, y) : inner product of vectors x and y

: n-dimensional real and complex spaces, respectively

: set of real matrices with m rows and n columns

: a vector space V over a field K (see also )

dim V : dimension of a vector space

: linear transformation between two vector spaces and over the same field K

L(V; W) : the set of linear transformations from vector space V to vector space W

: null space (kernel) of a linear transformation whose dimension is n(T)

: the dimension of the range TV of a linear transformation

We use the following important syntax to denote matrices:

(4.1) These symbols are used in definitions theorems and algorithms A good way to - фото 504

These symbols are used in definitions, theorems and algorithms. A good way to learn is to take (simpler) concrete examples before moving to more complex cases and applications.

In time, you should get to the stage whereby you can understand the above notation without having to think twice about it. The same remark holds for all the other notation in this book. It's half the battle!

4.2 WHAT IS A VECTOR SPACE?

From Wikipedia:

In mathematics, a field is a set in which addition, subtraction, multiplication, and division are defined and these operators behave as the corresponding operations on rational and real numbers do. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics.

The best known fields are the field of rational numbers, the field of real numbers and the field of complex numbers.

In general, we use the symbol K to denote a generic field, but in most cases we work with real numbers as the underlying field in vector spaces. In some cases, complex numbers are used.

A vector space V over a field K (denoted by V ( K )) is a collection of objects (called vectors ) together with operations of vector addition and multiplication by elements of K (called scalars ) satisfying the following axioms for addition of vectors:

(4.2) Axiom A1 states that addition is associative and axiom A2 states that - фото 505

Axiom A1 states that addition is associative , and axiom A2 states that addition is commutative . The element 0 is called the zero element of the vector space.

Scalar multiplication is defined by the axioms 43 From these axioms we see that subtraction of vectors is possible - фото 506:

(4.3) From these axioms we see that subtraction of vectors is possible because The - фото 507

From these axioms we see that subtraction of vectors is possible because The prototypical examples of vector spaces are n dimensional vectors and - фото 508.

The prototypical examples of vector spaces are n -dimensional vectors and rectangular matrices over a field K :

(4.4) For matrices 45 We now define an important nonnegative realvalued - фото 509

For matrices:

(4.5) We now define an important nonnegative realvalued function on a vector space - фото 510

We now define an important non-negative real-valued function on a vector space V called a norm . It has the following properties:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Numerical Methods in Computational Finance»

Представляем Вашему вниманию похожие книги на «Numerical Methods in Computational Finance» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Numerical Methods in Computational Finance»

Обсуждение, отзывы о книге «Numerical Methods in Computational Finance» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x