Daniel J. Duffy - Numerical Methods in Computational Finance

Здесь есть возможность читать онлайн «Daniel J. Duffy - Numerical Methods in Computational Finance» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Numerical Methods in Computational Finance: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Numerical Methods in Computational Finance»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book is a detailed and step-by-step introduction to the mathematical foundations of ordinary and partial differential equations, their approximation by the finite difference method and applications to computational finance. The book is structured so that it can be read by beginners, novices and expert users.
Part A Mathematical Foundation for One-Factor Problems
Chapters 1 to 7 introduce the mathematical and numerical analysis concepts that are needed to understand the finite difference method and its application to computational finance.
Part B Mathematical Foundation for Two-Factor Problems
Chapters 8 to 13 discuss a number of rigorous mathematical techniques relating to elliptic and parabolic partial differential equations in two space variables. In particular, we develop strategies to preprocess and modify a PDE before we approximate it by the finite difference method, thus avoiding ad-hoc and heuristic tricks.
Part C The Foundations of the Finite Difference Method (FDM)
Chapters 14 to 17 introduce the mathematical background to the finite difference method for initial boundary value problems for parabolic PDEs. It encapsulates all the background information to construct stable and accurate finite difference schemes.
Part D Advanced Finite Difference Schemes for Two-Factor Problems
Chapters 18 to 22 introduce a number of modern finite difference methods to approximate the solution of two factor partial differential equations. This is the only book we know of that discusses these methods in any detail.
Part E Test Cases in Computational Finance
Chapters 23 to 26 are concerned with applications based on previous chapters. We discuss finite difference schemes for a wide range of one-factor and two-factor problems.
This book is suitable as an entry-level introduction as well as a detailed treatment of modern methods as used by industry quants and MSc/MFE students in finance. The topics have applications to numerical analysis, science and engineering.
More on computational finance and the author’s online courses, see www.datasim.nl.

Numerical Methods in Computational Finance — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Numerical Methods in Computational Finance», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

We now define another condition on the diffusion coefficient in Equation (3.17).

C5: Numerical Methods in Computational Finance - изображение 453and for every картинка 454there exists an and such that Theorem 34Assume conditions C4 C1 an - фото 455and such that Theorem 34Assume conditions C4 C1 and C5 hold Then the Equation - фото 456such that:

Theorem 34Assume conditions C4 C1 and C5 hold Then the Equation 317has a - фото 457

Theorem 3.4Assume conditions C4, C1 and C5 hold. Then the Equation (3.17)has a continuous solution with probability 1 for any initial condition картинка 458.

For proofs of these theorems, see Skorokhod (1982), for example.

In some cases it is possible to find a closed-form solution of Equation (3.17)(or equivalently, Equation (3.18)). When the drift and diffusion coefficients are constant, we see that the exact solution is given by the formula:

(3.19) Knowing the exact solution is useful because we can test the accuracy of - фото 459

Knowing the exact solution is useful, because we can test the accuracy of finite difference schemes against it, and this gives us some insights into how well these schemes work for a range of parameter values.

It is useful to know how the solution of Equation (3.17)behaves for large values of time; the answer depends on a relationship between the drift and diffusion parameters:

In general it is not possible to find an exact solution and in these cases we - фото 460

In general it is not possible to find an exact solution, and in these cases we must resort to numerical approximation techniques.

Equation (3.17)is a one-factor equation because there is only one dependent variable (namely картинка 461) to be modelled. It is possible to define equations with several dependent variables. The prototypical non-linear stochastic differential equation is given by the system:

(3.20) where In general the drift and diffusion terms in 320are nonlinear - фото 462

where:

Numerical Methods in Computational Finance - изображение 463

In general the drift and diffusion terms in (3.20)are non-linear:

Numerical Methods in Computational Finance - изображение 464

This is a generalisation of Equation (3.17). Thus, instead of scalars this system employs vectors for the solution, drift and random number terms while the diffusion term is a rectangular matrix.

Existence and uniqueness theorems for the solution of the SDE system (3.20)are similar to those in the one-factor case. For example, theorem 5.2.1 in Øksendal (1998) addresses these issues. We discuss SDEs in more detail in Chapter 13.

3.5 NUMERICAL METHODS FOR ODES

In this section we introduce a class of one-step methods to approximate the solution of ODE system (3.1).

The first step is to replace continuous time by discrete time. To this end, we divide the interval [0, T ] into a number of subintervals. We define mesh points as follows In this case we define a set of subintervals - фото 465 mesh points as follows:

Numerical Methods in Computational Finance - изображение 466

In this case we define a set of subintervals Numerical Methods in Computational Finance - изображение 467of size Numerical Methods in Computational Finance - изображение 468 , Numerical Methods in Computational Finance - изображение 469.

In general, we speak of a non-uniform mesh when the sizes of the subintervals are not necessarily the same. However, in this book we consider in the main a class of finite difference schemes where the N subintervals have the same length (we then speak of a uniform mesh ), namely Numerical Methods in Computational Finance - изображение 470. The variable картинка 471is also used to denote the uniform mesh size .

In general, we define картинка 472to be the approximate solution at time картинка 473and we write the functional dependence of on and h by 321 where - фото 474on and h by 321 where is called the increment fun - фото 475and h by:

(3.21) where is called the increment function For example in the case of the - фото 476

where Numerical Methods in Computational Finance - изображение 477is called the increment function . For example, in the case of the explicit Euler method , this function is:

Numerical Methods in Computational Finance - изображение 478

The increment function represents the increment of the approximate solution. In general, the goal is to produce a formula for картинка 479that agrees with a certain exact relative increment with an error of картинка 480where without making it necessary to compute the derivative of f Henrici 1962 A - фото 481without making it necessary to compute the derivative of f (Henrici (1962)). A special case of (3.21)is the fourth-order Runge–Kutta method :

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Numerical Methods in Computational Finance»

Представляем Вашему вниманию похожие книги на «Numerical Methods in Computational Finance» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Numerical Methods in Computational Finance»

Обсуждение, отзывы о книге «Numerical Methods in Computational Finance» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x