Daniel J. Duffy - Numerical Methods in Computational Finance

Здесь есть возможность читать онлайн «Daniel J. Duffy - Numerical Methods in Computational Finance» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Numerical Methods in Computational Finance: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Numerical Methods in Computational Finance»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book is a detailed and step-by-step introduction to the mathematical foundations of ordinary and partial differential equations, their approximation by the finite difference method and applications to computational finance. The book is structured so that it can be read by beginners, novices and expert users.
Part A Mathematical Foundation for One-Factor Problems
Chapters 1 to 7 introduce the mathematical and numerical analysis concepts that are needed to understand the finite difference method and its application to computational finance.
Part B Mathematical Foundation for Two-Factor Problems
Chapters 8 to 13 discuss a number of rigorous mathematical techniques relating to elliptic and parabolic partial differential equations in two space variables. In particular, we develop strategies to preprocess and modify a PDE before we approximate it by the finite difference method, thus avoiding ad-hoc and heuristic tricks.
Part C The Foundations of the Finite Difference Method (FDM)
Chapters 14 to 17 introduce the mathematical background to the finite difference method for initial boundary value problems for parabolic PDEs. It encapsulates all the background information to construct stable and accurate finite difference schemes.
Part D Advanced Finite Difference Schemes for Two-Factor Problems
Chapters 18 to 22 introduce a number of modern finite difference methods to approximate the solution of two factor partial differential equations. This is the only book we know of that discusses these methods in any detail.
Part E Test Cases in Computational Finance
Chapters 23 to 26 are concerned with applications based on previous chapters. We discuss finite difference schemes for a wide range of one-factor and two-factor problems.
This book is suitable as an entry-level introduction as well as a detailed treatment of modern methods as used by industry quants and MSc/MFE students in finance. The topics have applications to numerical analysis, science and engineering.
More on computational finance and the author’s online courses, see www.datasim.nl.

Numerical Methods in Computational Finance — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Numerical Methods in Computational Finance», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

System (3.14)is sometimes called the Lotka–Volterra equations, which are an example of a more general Kolmogorov model to model the dynamics of ecological systems with predator-prey interactions, competition, disease and mutualism (Lotka (1956)).

3.3.4 Logistic Function

A logistic function (or logistic curve ) is an S-shaped sigmoid curve defined by the equation:

(3.15) where value of sigmoids midpoint - фото 434

where

картинка 435 картинка 436-value of sigmoid's midpoint
картинка 437curve's maximum value
steepness of the curve A special case is when resulting in the standard - фото 438steepness of the curve.

A special case is when Numerical Methods in Computational Finance - изображение 439, resulting in the standard logistic function defined by the equation:

Numerical Methods in Computational Finance - изображение 440

We can verify from this equation that the logistic function satisfies the non-linear initial value problem:

(3.16) The logistic function models processes in a range of fields such as artificial - фото 441

The logistic function models processes in a range of fields such as artificial neural networks (learning algorithms, where it is called an activation function ), economics, probability and statistics, to name a few.

3.4 EXISTENCE THEOREMS FOR STOCHASTIC DIFFERENTIAL EQUATIONS (SDEs)

A random process is a family of random variables defined on some probability space and indexed by the parameter t where t belongs to some index set. A random process is a function of two variables:

where T is the index set and S is the sample space For a fixed value of t - фото 442

where T is the index set and S is the sample space . For a fixed value of t , the random process becomes a random variable, while for a fixed sample point x in S the random process is a real-valued function of t called a sample function or a realisation of the process. It is also sometimes called a path .

The index set T is called the parameter set, and the values assumed by картинка 443are called the states ; finally, the set of all possible values is called the state space of the random process.

The index set T can be discrete or continuous; if T is discrete, then the process is called a discrete-parameter or discrete-time process (also known as a random sequence ). If T is continuous, then we say that the random process is called continuous-parameter or continuous-time . We can also consider the situation where the state is discrete or continuous. We then say that the random process is called discrete-state (chain) or continuous-state , respectively.

3.4.1 Stochastic Differential Equations (SDEs)

We give a short introduction to stochastic differential equations (SDEs) as they are closely related to ODEs. We discuss SDEs in more detail in Chapter 13.

We introduce the scalar random processes described by SDEs of the form:

(3.17) where random process transition drift coefficient diffusion coefficient - фото 444

where:

random process

transition (drift) coefficient

diffusion coefficient

Brownian process

given initial condition

defined in the interval [0, T ]. We assume for the moment that the process takes values on the real line. We know that this SDE can be written in the equivalent integral form:

(3.18) This is a nonlinear equation because the unknown random process appears on - фото 445

This is a non-linear equation, because the unknown random process appears on both sides of the equation and it cannot be expressed in a closed form. We know that the second integral:

is a continuous process with probability 1 provided is a bounded process In - фото 446

is a continuous process (with probability 1) provided is a bounded process In particular we restrict the scope to those functions - фото 447is a bounded process. In particular, we restrict the scope to those functions for which:

Using this fact we shall see that the solution of Equation 317is bounded - фото 448

Using this fact, we shall see that the solution of Equation (3.17)is bounded and continuous with probability 1.

We now discuss existence and uniqueness theorems. First, we define some conditions on the coefficients in Equation (3.17):

C1: such that .

C2: , such that

C3: and are defined and measurable with respect to their variables where .

C4: and are continuous with respect to their variables for .

Condition C2 is called a Lipschitz condition in the second variable, while condition C1 constrains the growth of the coefficients in Equation (3.17). We assume throughout that the random variable картинка 449is independent of W ( t ).

Theorem 3.2Assume conditions C1, C2 and C3 hold. Then Equation (3.17)has a unique continuous solution with probability 1 for any initial condition картинка 450.

Theorem 3.3Assume that conditions C1 and C4 hold. Then the Equation (3.17)has a continuous solution with probability 1 for any initial condition картинка 451.

We note the difference between the two theorems: the condition C2 is what makes the solution unique. Finally, both theorems assume that Numerical Methods in Computational Finance - изображение 452is independent of the Brownian motion W ( t ).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Numerical Methods in Computational Finance»

Представляем Вашему вниманию похожие книги на «Numerical Methods in Computational Finance» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Numerical Methods in Computational Finance»

Обсуждение, отзывы о книге «Numerical Methods in Computational Finance» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x