Daniel J. Duffy - Numerical Methods in Computational Finance

Здесь есть возможность читать онлайн «Daniel J. Duffy - Numerical Methods in Computational Finance» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Numerical Methods in Computational Finance: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Numerical Methods in Computational Finance»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book is a detailed and step-by-step introduction to the mathematical foundations of ordinary and partial differential equations, their approximation by the finite difference method and applications to computational finance. The book is structured so that it can be read by beginners, novices and expert users.
Part A Mathematical Foundation for One-Factor Problems
Chapters 1 to 7 introduce the mathematical and numerical analysis concepts that are needed to understand the finite difference method and its application to computational finance.
Part B Mathematical Foundation for Two-Factor Problems
Chapters 8 to 13 discuss a number of rigorous mathematical techniques relating to elliptic and parabolic partial differential equations in two space variables. In particular, we develop strategies to preprocess and modify a PDE before we approximate it by the finite difference method, thus avoiding ad-hoc and heuristic tricks.
Part C The Foundations of the Finite Difference Method (FDM)
Chapters 14 to 17 introduce the mathematical background to the finite difference method for initial boundary value problems for parabolic PDEs. It encapsulates all the background information to construct stable and accurate finite difference schemes.
Part D Advanced Finite Difference Schemes for Two-Factor Problems
Chapters 18 to 22 introduce a number of modern finite difference methods to approximate the solution of two factor partial differential equations. This is the only book we know of that discusses these methods in any detail.
Part E Test Cases in Computational Finance
Chapters 23 to 26 are concerned with applications based on previous chapters. We discuss finite difference schemes for a wide range of one-factor and two-factor problems.
This book is suitable as an entry-level introduction as well as a detailed treatment of modern methods as used by industry quants and MSc/MFE students in finance. The topics have applications to numerical analysis, science and engineering.
More on computational finance and the author’s online courses, see www.datasim.nl.

Numerical Methods in Computational Finance — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Numerical Methods in Computational Finance», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

If we assume that the real parts of the eigenvalues are less than zero, we can conclude that the solution tends to the steady-state. Even though this solution is well-behaved the cause of numerical instabilities is the presence of quickly decaying transient components of the solution caused by the dominant eigenvalues of the matrix A in (2.45).

Let us take an example whose matrix has already been given in diagonal form:

Numerical Methods in Computational Finance - изображение 357

The solution of this system is given by:

Numerical Methods in Computational Finance - изображение 358

The solutions decay at different rates, and in the case of the explicit Euler method the inequality:

Numerical Methods in Computational Finance - изображение 359

must be satisfied if the first component of the solution is to remain within the region of absolute stability. Unfortunately, choosing a time step of these proportions will be too small to allow for control over the round-off error in the second component.

In this case we fit the dominant eigenvalue. For variable coefficient systems and non-linear systems, we periodically compute the Jacobian matrix and carry out fitting on it.

The presence of different time scales in ODEs leads to a number of challenges when approximating them using the standard finite difference schemes. In particular, schemes such as explicit and implicit Euler, Crank–Nicolson, and predictor-corrector do not approximate these systems well, unless a prohibitively small time step is used. Let us take the example (Dahlquist and Björck (1974)):

with exact solution This is a stiff problem because of the different time - фото 360

with exact solution:

This is a stiff problem because of the different time scales in the solution - фото 361

This is a stiff problem because of the different time scales in the solution. We carried out an experiment using the explicit Euler method, and we had to divide the interval картинка 362into 1.2 million subintervals in order to achieve accuracy to three decimal places. The implicit Euler and Crank–Nicolson methods are not much better.

Robust ODE solvers for stiff system using the Boost C++ library odeint are discussed in Duffy (2018).

2.7 INTERMEZZO: EXPLICIT SOLUTIONS

A special case of an initial value problem is when the number of dimensions n in an initial value problem is equal to 1. In this case we speak of a scalar problem, and it is useful to study these problems if one wishes to get some insights into how finite difference methods work. In this section we discuss some numerical properties of one-step finite difference schemes for the linear scalar problem:

where The reader can check that the onestep methods Equations 210 - фото 363

where The reader can check that the onestep methods Equations 210 211and - фото 364

The reader can check that the one-step methods ( Equations (2.10), (2.11)and (2.12)can all be cast as the general form recurrence relation :

where Then using this formula and mathematical induction we can give an - фото 365

where Then using this formula and mathematical induction we can give an explicit - фото 366Then, using this formula and mathematical induction we can give an explicit solution at any time level as follows:

with for a mesh function A special case is when the coeffic - фото 367

with:

for a mesh function A special case is when the coefficients and - фото 368

for a mesh function картинка 369. A special case is when the coefficients Numerical Methods in Computational Finance - изображение 370and Numerical Methods in Computational Finance - изображение 371are constant Numerical Methods in Computational Finance - изображение 372, that is:

Then the general solution is given by where we note that powe - фото 373

Then the general solution is given by:

where we note that power of constant and - фото 374

where we note that картинка 375power of constant картинка 376and In order to prove this we need the formula for the sum of a series For a - фото 377.

In order to prove this, we need the formula for the sum of a series:

For a readable introduction to difference schemes we refer the reader to - фото 378

For a readable introduction to difference schemes, we refer the reader to Goldberg (1986).

2.8 SUMMARY AND CONCLUSIONS

In this chapter we gave an introduction to scalar ODEs and systems of ODEs. The main goal was to help the reader become acquainted with their mathematical and numerical foundations as well as become familiar with the associated notation. We recommend learning the main concepts in this chapter because many of them will be used and needed when we model one-factor and two-factor convection-diffusion-reaction PDEs such as the Black–Scholes equation, for example.

Contrary to popular thinking, there is more to ODEs than trying to find analytical solutions for them. Very few ODEs have analytical solutions, and we must resort to ODE solvers.

CHAPTER 3 Ordinary Differential Equations (ODEs), Part 2

The source of all great mathematics is the special case, the concrete example. It is frequent in mathematics that every instance of a concept of seemingly great generality is in essence the same as a small and concrete special case .

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Numerical Methods in Computational Finance»

Представляем Вашему вниманию похожие книги на «Numerical Methods in Computational Finance» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Numerical Methods in Computational Finance»

Обсуждение, отзывы о книге «Numerical Methods in Computational Finance» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x