Daniel J. Duffy - Numerical Methods in Computational Finance

Здесь есть возможность читать онлайн «Daniel J. Duffy - Numerical Methods in Computational Finance» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Numerical Methods in Computational Finance: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Numerical Methods in Computational Finance»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book is a detailed and step-by-step introduction to the mathematical foundations of ordinary and partial differential equations, their approximation by the finite difference method and applications to computational finance. The book is structured so that it can be read by beginners, novices and expert users.
Part A Mathematical Foundation for One-Factor Problems
Chapters 1 to 7 introduce the mathematical and numerical analysis concepts that are needed to understand the finite difference method and its application to computational finance.
Part B Mathematical Foundation for Two-Factor Problems
Chapters 8 to 13 discuss a number of rigorous mathematical techniques relating to elliptic and parabolic partial differential equations in two space variables. In particular, we develop strategies to preprocess and modify a PDE before we approximate it by the finite difference method, thus avoiding ad-hoc and heuristic tricks.
Part C The Foundations of the Finite Difference Method (FDM)
Chapters 14 to 17 introduce the mathematical background to the finite difference method for initial boundary value problems for parabolic PDEs. It encapsulates all the background information to construct stable and accurate finite difference schemes.
Part D Advanced Finite Difference Schemes for Two-Factor Problems
Chapters 18 to 22 introduce a number of modern finite difference methods to approximate the solution of two factor partial differential equations. This is the only book we know of that discusses these methods in any detail.
Part E Test Cases in Computational Finance
Chapters 23 to 26 are concerned with applications based on previous chapters. We discuss finite difference schemes for a wide range of one-factor and two-factor problems.
This book is suitable as an entry-level introduction as well as a detailed treatment of modern methods as used by industry quants and MSc/MFE students in finance. The topics have applications to numerical analysis, science and engineering.
More on computational finance and the author’s online courses, see www.datasim.nl.

Numerical Methods in Computational Finance — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Numerical Methods in Computational Finance», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
In general with extrapolation methods we state what accuracy we desire and - фото 269

In general, with extrapolation methods we state what accuracy we desire, and the algorithm divides the interval картинка 270into smaller subintervals until the difference between the solutions on consecutive meshes is less than a given tolerance.

A thorough introduction to extrapolation techniques for ordinary and partial differential equations (including one-factor and multifactor parabolic equations) can be found in Marchuk and Shaidurov (1983).

2.5 FOUNDATIONS OF DISCRETE TIME APPROXIMATIONS

We discuss the following properties of a finite difference approximation to an ODE:

Consistency

Stability

Convergence.

These topics are also relevant when we discuss numerical methods for partial differential equations.

In order to reduce the scope of the problem (for the moment), we examine the simple scalar non-linear initial value problem (IVP) defined by:

(2.31) We assume that this system has a unique solution in the interval In general - фото 271

We assume that this system has a unique solution in the interval картинка 272. In general it is impossible to find an exact solution of Equation (2.31), and we resort to some kind of numerical scheme. To this end, we can write a generic step method in the form Henrici 1962 Lambert 1991 232 where - фото 273 -step method in the form (Henrici (1962), Lambert (1991)):

(2.32) where and are constants - фото 274

where Numerical Methods in Computational Finance - изображение 275and Numerical Methods in Computational Finance - изображение 276are constants, Numerical Methods in Computational Finance - изображение 277, and картинка 278is the constant step-size.

Since this is a Numerical Methods in Computational Finance - изображение 279-step method, we need to give Numerical Methods in Computational Finance - изображение 280 initial conditions :

(2.33) Numerical Methods in Computational Finance - изображение 281

We note that the first initial condition is known from the continuous problem (2.31)while the determination of the other картинка 282numerical initial conditions is a part of the numerical problem. These картинка 283numerical initial conditions must be chosen with care if we wish to avoid producing unstable schemes. In general, we compute these values by using Taylor's series expansions or by one-step methods.

We discuss consistency of scheme (2.32). This is a measure of how well the exact solution of (2.31)satisfies (2.32). Consistency states that the difference Equation (2.32)formally converges to the differential equation in (2.31)when tends to zero In order to determine if a finite difference scheme is - фото 284tends to zero. In order to determine if a finite difference scheme is consistent, we define the generating polynomials :

(2.34) It can be shown that consistency see Henrici 1962 Dahlquist and Björck - фото 285

It can be shown that consistency (see Henrici (1962), Dahlquist and Björck (1974)) is equivalent to the following conditions:

(2.35) Let us take the explicit Euler method applied to IVP 231 The reader can - фото 286

Let us take the explicit Euler method applied to IVP (2.31):

The reader can check the following 236 from which we deduce that the - фото 287

The reader can check the following:

(2.36) from which we deduce that the explicit Euler scheme is consistent with the IVP - фото 288

from which we deduce that the explicit Euler scheme is consistent with the IVP (2.31)by checking with Equation (2.35).

The class of difference schemes (2.32)subsumes well-known specific schemes, for example:

The one-step () explicit and implicit Euler schemes.

The two-step () leapfrog scheme.

The three-step () Adams–Bashforth scheme.

The one-step trapezoidal () scheme.

Each of these schemes is consistent with the IVP (2.31), as can be checked by calculating their generating polynomials.

We now discuss what is meant by the stability of a finite difference scheme. To take a simple counterexample, a scheme whose solution is exponentially increasing or oscillating in time while the exact solution is decreasing in time cannot be stable. In order to define stability, it is common practice to examine model problems (whose solutions are known) and apply various finite difference schemes to them. We then examine the stability properties of the schemes. The model problem in this case is the constant-coefficient scalar IVP in which the coefficient is a complex number 237 and whose solution is given by 238 - фото 289is a complex number:

(2.37) Numerical Methods in Computational Finance - изображение 290

and whose solution is given by:

(2.38) Numerical Methods in Computational Finance - изображение 291

Thus, the solution is increasing when картинка 292is positive and real and decreasing when is negative and real The corresponding finite difference schemes should have - фото 293is negative and real. The corresponding finite difference schemes should have similar properties. We take an example of the one-step trapezoidal method :

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Numerical Methods in Computational Finance»

Представляем Вашему вниманию похожие книги на «Numerical Methods in Computational Finance» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Numerical Methods in Computational Finance»

Обсуждение, отзывы о книге «Numerical Methods in Computational Finance» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x