Daniel J. Duffy - Numerical Methods in Computational Finance

Здесь есть возможность читать онлайн «Daniel J. Duffy - Numerical Methods in Computational Finance» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Numerical Methods in Computational Finance: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Numerical Methods in Computational Finance»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book is a detailed and step-by-step introduction to the mathematical foundations of ordinary and partial differential equations, their approximation by the finite difference method and applications to computational finance. The book is structured so that it can be read by beginners, novices and expert users.
Part A Mathematical Foundation for One-Factor Problems
Chapters 1 to 7 introduce the mathematical and numerical analysis concepts that are needed to understand the finite difference method and its application to computational finance.
Part B Mathematical Foundation for Two-Factor Problems
Chapters 8 to 13 discuss a number of rigorous mathematical techniques relating to elliptic and parabolic partial differential equations in two space variables. In particular, we develop strategies to preprocess and modify a PDE before we approximate it by the finite difference method, thus avoiding ad-hoc and heuristic tricks.
Part C The Foundations of the Finite Difference Method (FDM)
Chapters 14 to 17 introduce the mathematical background to the finite difference method for initial boundary value problems for parabolic PDEs. It encapsulates all the background information to construct stable and accurate finite difference schemes.
Part D Advanced Finite Difference Schemes for Two-Factor Problems
Chapters 18 to 22 introduce a number of modern finite difference methods to approximate the solution of two factor partial differential equations. This is the only book we know of that discusses these methods in any detail.
Part E Test Cases in Computational Finance
Chapters 23 to 26 are concerned with applications based on previous chapters. We discuss finite difference schemes for a wide range of one-factor and two-factor problems.
This book is suitable as an entry-level introduction as well as a detailed treatment of modern methods as used by industry quants and MSc/MFE students in finance. The topics have applications to numerical analysis, science and engineering.
More on computational finance and the author’s online courses, see www.datasim.nl.

Numerical Methods in Computational Finance — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Numerical Methods in Computational Finance», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

This equation is useful because it can be mapped to C++ code and will be used by other schemes by defining the appropriate value of the parameter Finally the trapezoidal method is similar to CrankNicolson but it takes a - фото 214.

Finally, the trapezoidal method is similar to Crank–Nicolson, but it takes a slightly different averaging mechanism:

(2.16) 232 Discrete Maximum Principle Having developed some difference schemes we - фото 215

2.3.2 Discrete Maximum Principle

Having developed some difference schemes, we would like to have a way of determining if the discrete solution is a good approximation to the exact solution in some sense. Although we do not deal with this issue in great detail, we do look at stability and convergence issues.

Definition 2.1The one-step difference scheme of the form 213is said to be positive if 217 implies that - фото 216of the form (2.13)is said to be positive if:

(2.17) implies that Here is a mesh function defined at the me - фото 217

implies that Here is a mesh function defined at the mesh points Based - фото 218. Here, картинка 219is a mesh function defined at the mesh points Based on this definition we see that the implicit Euler scheme is always - фото 220.

Based on this definition, we see that the implicit Euler scheme is always positive while the explicit Euler scheme is positive if the term:

(2.18) is positive Thus if the function achieves large values and this happens in - фото 221

is positive. Thus, if the function картинка 222achieves large values (and this happens in practice), we will have to make картинка 223very small in order to produce good results. Even worse, if картинка 224does not satisfy the constraint in (2.18)then the discrete solution looks nothing like the exact solution, and so-called spurious oscillations occur. This phenomenon occurs in other finite difference schemes, and we propose a number of remedies later in this book.

Definition 2.2A difference scheme is stable if its solution is based in much the same way as the solution of the continuous problem (2.1)(see Theorem 2.1), that is:

(2.19) where and Based on the fact that a scheme is sta - фото 225

where:

and Based on the fact that a scheme is stable and consistent see Dahlquist - фото 226

and:

картинка 227

Based on the fact that a scheme is stable and consistent (see Dahlquist and Björck (1974)), we can state in general that the error between the exact and discrete solutions is bounded by some polynomial power of the step-size 220 where is a constant that is independent of - фото 228:

(2.20) where is a constant that is independent of For example in - фото 229

where картинка 230is a constant that is independent of For example in the case of schemes 210 211and 212we have 221 - фото 231. For example, in the case of schemes (2.10), (2.11)and (2.12)we have:

(2.21) Thus we see that the Box method is secondorder accurate and is better than - фото 232

Thus, we see that the Box method is second-order accurate and is better than the implicit Euler scheme, which is only first-order accurate.

2.4 SPECIAL SCHEMES

We introduce exponentially fitted schemes that are used for boundary layer problems (for example, convection-dominated PDEs) and the extrapolation method to increase the accuracy of finite difference schemes. We shall see how to apply these techniques to more complex problems in later chapters. We also discuss predictor-corrector methods.

2.4.1 Exponential Fitting

We now introduce a special class of schemes with desirable properties. These are schemes that are suitable for problems with rapidly increasing or decreasing solutions. In the literature these are called stiff or singular perturbation problems (see Duffy (1980)). We can motivate these schemes in the present context. Let us take the problem (2.1)when картинка 233is constant and Numerical Methods in Computational Finance - изображение 234is zero. The solution Numerical Methods in Computational Finance - изображение 235is given by a special case of (2.2), namely:

(2.22) Numerical Methods in Computational Finance - изображение 236

If a is large then the derivatives of tend to increase in fact at the derivatives are given by 223 - фото 237tend to increase; in fact, at the derivatives are given by 223 The physical interpretation of this - фото 238, the derivatives are given by:

(2.23) The physical interpretation of this fact is that a boundary layer exits near - фото 239

The physical interpretation of this fact is that a boundary layer exits near картинка 240where картинка 241is changing rapidly, and it has been shown that classical finite difference schemes fail to give acceptable answers when картинка 242is large (typically values between 1000 and 10000). We get so-called spurious oscillations , and this problem is also encountered when solving one-factor and multifactor Black–Scholes equations using finite difference methods. We have resolved this problem using so-called exponentially fitted schemes . We motivate the scheme in the present context, and later chapters describe how to apply it to more complicated cases.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Numerical Methods in Computational Finance»

Представляем Вашему вниманию похожие книги на «Numerical Methods in Computational Finance» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Numerical Methods in Computational Finance»

Обсуждение, отзывы о книге «Numerical Methods in Computational Finance» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x