Daniel J. Duffy - Numerical Methods in Computational Finance

Здесь есть возможность читать онлайн «Daniel J. Duffy - Numerical Methods in Computational Finance» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Numerical Methods in Computational Finance: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Numerical Methods in Computational Finance»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book is a detailed and step-by-step introduction to the mathematical foundations of ordinary and partial differential equations, their approximation by the finite difference method and applications to computational finance. The book is structured so that it can be read by beginners, novices and expert users.
Part A Mathematical Foundation for One-Factor Problems
Chapters 1 to 7 introduce the mathematical and numerical analysis concepts that are needed to understand the finite difference method and its application to computational finance.
Part B Mathematical Foundation for Two-Factor Problems
Chapters 8 to 13 discuss a number of rigorous mathematical techniques relating to elliptic and parabolic partial differential equations in two space variables. In particular, we develop strategies to preprocess and modify a PDE before we approximate it by the finite difference method, thus avoiding ad-hoc and heuristic tricks.
Part C The Foundations of the Finite Difference Method (FDM)
Chapters 14 to 17 introduce the mathematical background to the finite difference method for initial boundary value problems for parabolic PDEs. It encapsulates all the background information to construct stable and accurate finite difference schemes.
Part D Advanced Finite Difference Schemes for Two-Factor Problems
Chapters 18 to 22 introduce a number of modern finite difference methods to approximate the solution of two factor partial differential equations. This is the only book we know of that discusses these methods in any detail.
Part E Test Cases in Computational Finance
Chapters 23 to 26 are concerned with applications based on previous chapters. We discuss finite difference schemes for a wide range of one-factor and two-factor problems.
This book is suitable as an entry-level introduction as well as a detailed treatment of modern methods as used by industry quants and MSc/MFE students in finance. The topics have applications to numerical analysis, science and engineering.
More on computational finance and the author’s online courses, see www.datasim.nl.

Numerical Methods in Computational Finance — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Numerical Methods in Computational Finance», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Not only do we have to approximate functions at mesh points, but we also have to come up with a scheme to approximate the derivative appearing in Equation (2.1). There are several possibilities, and they are based on divided differences . For example, the following divided differences approximate the first derivative of Numerical Methods in Computational Finance - изображение 188at the mesh point Numerical Methods in Computational Finance - изображение 189;

(2.8) The first two divided differences are called onesided differences and give - фото 190

The first two divided differences are called one-sided differences and give first-order accuracy to the derivative, while the last divided difference is called a centred approximation to the derivative. In fact, by using a Taylor's expansion (assuming sufficient smoothness of we can prove the following FIGURE 21Continuous and discrete spaces 29 - фото 191), we can prove the following:

FIGURE 21Continuous and discrete spaces 29 Note that the first two - фото 192

FIGURE 2.1Continuous and discrete spaces.

(2.9) Note that the first two approximations use two consecutive mesh points while - фото 193

Note that the first two approximations use two consecutive mesh points while the last formula uses three consecutive mesh points.

We now decide on how to approximate Equation (2.1)using finite differences. To this end, we need to introduce two new concepts:

One-step and multistep methods

Explicit and implicit schemes.

A one-step method is a finite difference scheme that calculates the solution at time-level картинка 194in terms of the solution at time-level картинка 195. No information at levels картинка 196, картинка 197, or previous levels is needed in order to calculate the solution at level картинка 198. A multistep method, on the other hand, is a difference scheme where the solution at level картинка 199is determined by values at levels картинка 200 картинка 201and possibly previous time levels. Multistep methods are more complicated than one-step methods, and we concentrate solely on the latter methods in this book.

An explicit difference scheme is one where the solution at time картинка 202can be calculated from the information at level картинка 203directly. No extra arithmetic is needed: for example, using division or matrix inversion. An implicit finite difference scheme is one in which the terms involving the approximate solution at level картинка 204are grouped together and only then can the solution at this level be found. Obviously, implicit methods are more difficult to program than explicit methods because we must solve a system of equations at each time step.

2.3.1 Common Schemes

We now introduce a number of important and useful difference schemes that approximate the solution of Equation (2.1). These schemes will pop up all over the place in later chapters. Understanding how the schemes work in a simpler context will help you appreciate them when we tackle partial differential equations based on the Black–Scholes model. They also help in our understanding of notation, jargon, and syntax.

The main schemes are:

Explicit Euler

Implicit Euler

Crank–Nicolson (or Box scheme)

The trapezoidal method.

The explicit Euler method is given by:

(2.10) whereas the implicit Euler method is given by 211 Notice the difference - фото 205

whereas the implicit Euler method is given by:

(2.11) Notice the difference in Equation 210the solution at level can be directly - фото 206

Notice the difference: in Equation (2.10)the solution at level картинка 207can be directly calculated in terms of the solution at level n , while in Equation (2.11)we must rearrange terms in order to calculate the solution at level картинка 208.

The next scheme is called the Crank–Nicolson or box scheme , and it can be seen as an average of explicit and implicit Euler schemes. It is given as (see notation in Equation (2.7)):

(2.12) It is useful to know that the three schemes can be merged into one generic - фото 209

It is useful to know that the three schemes can be merged into one generic scheme as it were by introducing a parameter the scheme is sometimes called the Theta method 213 and the special - фото 210(the scheme is sometimes called the Theta method ):

(2.13) and the special cases are given by 214 The solution of Equation 213is - фото 211

and the special cases are given by:

(2.14) The solution of Equation 213is given by 215 This equation is useful - фото 212

The solution of Equation (2.13)is given by:

(2.15) This equation is useful because it can be mapped to C code and will be used - фото 213

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Numerical Methods in Computational Finance»

Представляем Вашему вниманию похожие книги на «Numerical Methods in Computational Finance» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Numerical Methods in Computational Finance»

Обсуждение, отзывы о книге «Numerical Methods in Computational Finance» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x