Daniel J. Duffy - Numerical Methods in Computational Finance

Здесь есть возможность читать онлайн «Daniel J. Duffy - Numerical Methods in Computational Finance» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Numerical Methods in Computational Finance: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Numerical Methods in Computational Finance»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book is a detailed and step-by-step introduction to the mathematical foundations of ordinary and partial differential equations, their approximation by the finite difference method and applications to computational finance. The book is structured so that it can be read by beginners, novices and expert users.
Part A Mathematical Foundation for One-Factor Problems
Chapters 1 to 7 introduce the mathematical and numerical analysis concepts that are needed to understand the finite difference method and its application to computational finance.
Part B Mathematical Foundation for Two-Factor Problems
Chapters 8 to 13 discuss a number of rigorous mathematical techniques relating to elliptic and parabolic partial differential equations in two space variables. In particular, we develop strategies to preprocess and modify a PDE before we approximate it by the finite difference method, thus avoiding ad-hoc and heuristic tricks.
Part C The Foundations of the Finite Difference Method (FDM)
Chapters 14 to 17 introduce the mathematical background to the finite difference method for initial boundary value problems for parabolic PDEs. It encapsulates all the background information to construct stable and accurate finite difference schemes.
Part D Advanced Finite Difference Schemes for Two-Factor Problems
Chapters 18 to 22 introduce a number of modern finite difference methods to approximate the solution of two factor partial differential equations. This is the only book we know of that discusses these methods in any detail.
Part E Test Cases in Computational Finance
Chapters 23 to 26 are concerned with applications based on previous chapters. We discuss finite difference schemes for a wide range of one-factor and two-factor problems.
This book is suitable as an entry-level introduction as well as a detailed treatment of modern methods as used by industry quants and MSc/MFE students in finance. The topics have applications to numerical analysis, science and engineering.
More on computational finance and the author’s online courses, see www.datasim.nl.

Numerical Methods in Computational Finance — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Numerical Methods in Computational Finance», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

In order to motivate the fitted scheme, consider the case of constant картинка 243and картинка 244. We wish to produce a difference scheme in such a way that the discrete solution is equal to the exact solution at the mesh points for this constant-coefficient case. We introduce a so-called fitting factor in the new scheme 224 The motivation for finding the fitting factor is to - фото 245in the new scheme:

(2.24) The motivation for finding the fitting factor is to demand that the exact - фото 246

The motivation for finding the fitting factor is to demand that the exact solution of (2.1)(which is known) has the same values as the discrete solution of (2.24)at the mesh points.

Plugging the exact solution (2.22)into (2.24)and doing some simple arithmetic, we get the following representation for the fitting factor 225 Having found the fitting factor for the constant coefficient case - фото 247:

(2.25) Having found the fitting factor for the constant coefficient case we - фото 248

Having found the fitting factor for the constant coefficient case, we generalise to a scheme for the case (2.1)as follows:

(2.26) In practice we work with a number of special cases 227 In the final case - фото 249

In practice we work with a number of special cases:

(2.27) In the final case is the hyperbolic cotangent function In later chapters we - фото 250

In the final case картинка 251is the hyperbolic cotangent function.

In later chapters we shall apply the fitting scheme to the one-factor and multifactor Black–Scholes equations, and we shall show that we get good approximations to the option price and its delta in all regions of картинка 252space where картинка 253is the underlying asset and картинка 254is time (up to maturity картинка 255). This is in contrast to the Crank–Nicolson scheme where the spurious oscillations are seen, especially when the underlying картинка 256is near the strike price картинка 257or when the payoff function is discontinuous.

2.4.2 Scalar Non-Linear Problems and Predictor-Corrector Method

Real-life problems are very seldom linear. In general, we model applications using non-linear IVPs:

(2.28) Here is a nonlinear function in u in general Of course Equation - фото 258

Here картинка 259is a non-linear function in u in general. Of course, Equation (2.28)contains Equation (2.1)as a special case. However, it is not possible to come up with an exact solution for (2.28)in general, and we must resort to some numerical techniques. Approximating (2.28)poses challenges because the resulting difference schemes may also be non-linear, thus forcing us to solve the discrete system at each time level by Newton's method or some other non-linear solver. For example, consider applying the trapezoidal method to (2.28):

(2.29) where is nonlinear Here see that the unknown term u is on both the left and - фото 260

where картинка 261is non-linear. Here see that the unknown term u is on both the left- and right-hand sides of the equation, and hence it is not possible to solve the problem explicitly in the way that we did for the linear case. However, not all is lost, and to this end we introduce the predictor-corrector method that consists of a set consisting of two difference schemes; the first equation uses the explicit Euler method to produce an intermediate solution called a predictor that is then used in what could be called a modified trapezoidal rule :

(2.30) The predictorcorrector is used in practice it can be used with nonlinear - фото 262

The predictor-corrector is used in practice; it can be used with non-linear systems and stochastic differential equations (SDE). We discuss this topic in Chapter 13.

2.4.3 Extrapolation

We give an introduction to a technique that allows us to improve the accuracy of finite difference schemes. This is called Richardson extrapolation in general. We take a specific case to show the essence of the method, namely the implicit Euler method (2.11). We know that it is first-order accurate and that it has good stability properties. We now apply the method on meshes of size k and k /2, and we can show that the approximate solutions can represented as follows:

Then Thus is a secondorder approximation to the solution of - фото 263

Then:

Thus is a secondorder approximation to the solution of 21 The constant - фото 264

Thus, картинка 265is a second-order approximation to the solution of (2.1).

The constant картинка 266is independent of картинка 267, and this is why we can eliminate it in the first equations to get a scheme that is second-order accurate. The same trick can be employed with the second-order Crank–Nicolson scheme to get a fourth-order accurate scheme as follows:

Then In general with extrapolation methods we state what accuracy we desire - фото 268

Then:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Numerical Methods in Computational Finance»

Представляем Вашему вниманию похожие книги на «Numerical Methods in Computational Finance» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Numerical Methods in Computational Finance»

Обсуждение, отзывы о книге «Numerical Methods in Computational Finance» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x