Daniel J. Duffy - Numerical Methods in Computational Finance

Здесь есть возможность читать онлайн «Daniel J. Duffy - Numerical Methods in Computational Finance» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Numerical Methods in Computational Finance: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Numerical Methods in Computational Finance»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book is a detailed and step-by-step introduction to the mathematical foundations of ordinary and partial differential equations, their approximation by the finite difference method and applications to computational finance. The book is structured so that it can be read by beginners, novices and expert users.
Part A Mathematical Foundation for One-Factor Problems
Chapters 1 to 7 introduce the mathematical and numerical analysis concepts that are needed to understand the finite difference method and its application to computational finance.
Part B Mathematical Foundation for Two-Factor Problems
Chapters 8 to 13 discuss a number of rigorous mathematical techniques relating to elliptic and parabolic partial differential equations in two space variables. In particular, we develop strategies to preprocess and modify a PDE before we approximate it by the finite difference method, thus avoiding ad-hoc and heuristic tricks.
Part C The Foundations of the Finite Difference Method (FDM)
Chapters 14 to 17 introduce the mathematical background to the finite difference method for initial boundary value problems for parabolic PDEs. It encapsulates all the background information to construct stable and accurate finite difference schemes.
Part D Advanced Finite Difference Schemes for Two-Factor Problems
Chapters 18 to 22 introduce a number of modern finite difference methods to approximate the solution of two factor partial differential equations. This is the only book we know of that discusses these methods in any detail.
Part E Test Cases in Computational Finance
Chapters 23 to 26 are concerned with applications based on previous chapters. We discuss finite difference schemes for a wide range of one-factor and two-factor problems.
This book is suitable as an entry-level introduction as well as a detailed treatment of modern methods as used by industry quants and MSc/MFE students in finance. The topics have applications to numerical analysis, science and engineering.
More on computational finance and the author’s online courses, see www.datasim.nl.

Numerical Methods in Computational Finance — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Numerical Methods in Computational Finance», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(2.39) The solution of Equation 239is given by We see that is - фото 294

The solution of Equation (2.39)is given by:

Numerical Methods in Computational Finance - изображение 295

We see that Numerical Methods in Computational Finance - изображение 296is bounded if and only if Numerical Methods in Computational Finance - изображение 297and this implies Numerical Methods in Computational Finance - изображение 298(recall that картинка 299is a complex number) where картинка 300means ‘real part of картинка 301’.

This example leads us to our first encounter with the concept of stability of finite difference schemes. In particular, we define the region of absolute stability of a numerical method for an IVP as the set of complex values of картинка 302for which all discrete approximations to the test problem (2.37)remain bounded when картинка 303tends to infinity. For example, for the trapezoidal method (2.39)the left-half plane is the stability region.

Theorem 2.1 (The Root Condition).A necessary and sufficient condition for the stability of a linear multistep method (2.32)is that all the roots of the polynomial картинка 304defined by Equation (2.34)are located inside or on the unit circle and that the roots of modulus 1 are simple.

We now discuss convergence issues. We say that a difference scheme has order of accuracy if where approximate solution of 232 - фото 305if:

where approximate solution of 232 exact solution of 231 and - фото 306

where картинка 307approximate solution of (2.32), картинка 308exact solution of (2.31), and картинка 309is independent of картинка 310.

We conclude this section by stating a convergence result that allows us to estimate the error between the exact solution of an initial value problem and the solution of a multistep scheme that approximates it. To this end, we consider the dimensional autonomous initial value problem By autonomous we mean that - фото 311-dimensional autonomous initial value problem:

By autonomous we mean that is a function of the dependent variable - фото 312

By autonomous we mean that картинка 313is a function of the dependent variable картинка 314only and is thus not of the form The latter form is called nonautonomous We approximate this IVP using the - фото 315. The latter form is called non-autonomous .

We approximate this IVP using the multistep method (2.32). We recall:

Theorem 22Assume that the solution of the is - фото 316

Theorem 2.2Assume that the solution картинка 317of the is times differentiable with and assume that - фото 318is times differentiable with and assume that is differentiable for all - фото 319times differentiable with and assume that is differentiable for all Suppose furthermore that th - фото 320and assume that картинка 321is differentiable for all картинка 322.

Suppose furthermore that the sequence is defined by the equations If the multistep method is stable and satisfies - фото 323is defined by the equations:

If the multistep method is stable and satisfies where C is a positive - фото 324

If the multistep method is stable and satisfies:

where C is a positive constant independent of then there exist constants - фото 325

where C is a positive constant independent of картинка 326, then there exist constants Numerical Methods in Computational Finance - изображение 327and Numerical Methods in Computational Finance - изображение 328such that for all Numerical Methods in Computational Finance - изображение 329:

In all cases we define the norm for a vector as - фото 330

In all cases we define the norm for a vector as We state this theorem in more general terms consiste - фото 331for a vector as We state this theorem in more general terms consistency and stability of - фото 332as:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Numerical Methods in Computational Finance»

Представляем Вашему вниманию похожие книги на «Numerical Methods in Computational Finance» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Numerical Methods in Computational Finance»

Обсуждение, отзывы о книге «Numerical Methods in Computational Finance» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x