Daniel J. Duffy - Numerical Methods in Computational Finance

Здесь есть возможность читать онлайн «Daniel J. Duffy - Numerical Methods in Computational Finance» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Numerical Methods in Computational Finance: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Numerical Methods in Computational Finance»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book is a detailed and step-by-step introduction to the mathematical foundations of ordinary and partial differential equations, their approximation by the finite difference method and applications to computational finance. The book is structured so that it can be read by beginners, novices and expert users.
Part A Mathematical Foundation for One-Factor Problems
Chapters 1 to 7 introduce the mathematical and numerical analysis concepts that are needed to understand the finite difference method and its application to computational finance.
Part B Mathematical Foundation for Two-Factor Problems
Chapters 8 to 13 discuss a number of rigorous mathematical techniques relating to elliptic and parabolic partial differential equations in two space variables. In particular, we develop strategies to preprocess and modify a PDE before we approximate it by the finite difference method, thus avoiding ad-hoc and heuristic tricks.
Part C The Foundations of the Finite Difference Method (FDM)
Chapters 14 to 17 introduce the mathematical background to the finite difference method for initial boundary value problems for parabolic PDEs. It encapsulates all the background information to construct stable and accurate finite difference schemes.
Part D Advanced Finite Difference Schemes for Two-Factor Problems
Chapters 18 to 22 introduce a number of modern finite difference methods to approximate the solution of two factor partial differential equations. This is the only book we know of that discusses these methods in any detail.
Part E Test Cases in Computational Finance
Chapters 23 to 26 are concerned with applications based on previous chapters. We discuss finite difference schemes for a wide range of one-factor and two-factor problems.
This book is suitable as an entry-level introduction as well as a detailed treatment of modern methods as used by industry quants and MSc/MFE students in finance. The topics have applications to numerical analysis, science and engineering.
More on computational finance and the author’s online courses, see www.datasim.nl.

Numerical Methods in Computational Finance — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Numerical Methods in Computational Finance», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Paul Halmos

3.1 INTRODUCTION AND OBJECTIVES

In Chapter 2we discussed both systems of ODEs and scalar ODEs. The focus was mainly concerned with notation, the structure of ODEs and finite difference schemes to approximate them. We implicitly assumed that the solution of the corresponding initial value problem existed in an otherwise unspecified time interval and that the solution was unique. These assumptions constitute a huge leap of faith. In this chapter we discuss existence and uniqueness results for ODEs and stochastic differential equation (SDEs). We also introduce several important numerical schemes and code in C++ and Python.

3.2 EXISTENCE AND UNIQUENESS RESULTS

We turn our attention to a more general initial value problem for a non-linear system of ODEs:

(3.1) where Some of the important questions to be answered are Does System - фото 379

where:

Some of the important questions to be answered are Does System 31have a - фото 380

Some of the important questions to be answered are:

Does System (3.1)have a unique solution?

In which interval does this solution exist?

What is the asymptotic behaviour of the solution as ?

To this end, let B be a region of картинка 381dimensional space, and let f be continuously differentiable with respect to t and with respect to all the components of y at all points of B . We assume that the following inequalities hold:

(3.2) and 33 Theorem 31Let f and - фото 382

and:

(3.3) Numerical Methods in Computational Finance - изображение 383

Theorem 3.1Let f and Numerical Methods in Computational Finance - изображение 384be continuous in the box where a and b are positive numbers and satisfying the bounds 32and 33for - фото 385where a and b are positive numbers and satisfying the bounds (3.2)and (3.3)for (t, y) in B. Let be the smaller of the numbers a and bM and define the successive - фото 386be the smaller of the numbers a and b/M and define the successive approximations:

(3.4) Then the sequence of successive approximations converges uniformly i - фото 387

Then the sequence Numerical Methods in Computational Finance - изображение 388of successive approximations Numerical Methods in Computational Finance - изображение 389converges (uniformly) in the interval Numerical Methods in Computational Finance - изображение 390to a solution Numerical Methods in Computational Finance - изображение 391of (3.1)that satisfies the initial condition Numerical Methods in Computational Finance - изображение 392.

Method (3.4)is called the Picard iterative method and it is used to prove the existence of the solution of systems of ODE (3.1). It is mainly of theoretical value, as it should not necessarily be seen as a practical way to construct a numerical solution. However, it does give us insights into the qualitative properties of the solution. On the other hand, it is a useful exercise to construct the sequence of iterates in Equation (3.4)for some simple cases.

We note that the IVP (3.1)can be written as an integral equation as follows:

(3.5) It can be proved that the solution of 31is also the solution of 35and - фото 393

It can be proved that the solution of (3.1)is also the solution of (3.5)and vice versa. We see then that Picard iteration is based on (3.5)and that we wish to have the iterates converging to a solution of (3.5).

We note that the Picard method is used primarily to prove the existence of solutions and it is not a numerical method as such.

3.2.1 An Example

We take a simple autonomous non-linear scalar ODE to show how to calculate Picard iterates:

(3.6) whose solution is given by We now compute the Picard iterates 34for this - фото 394

whose solution is given by:

Numerical Methods in Computational Finance - изображение 395

We now compute the Picard iterates (3.4)for this ODE in order to determine the values of t for which the ODE has a solution. For convenience, let us take Numerical Methods in Computational Finance - изображение 396. Some simple integration shows that:

(3.7) Numerical Methods in Computational Finance - изображение 397

We can see that the series is beginning to look like Numerical Methods in Computational Finance - изображение 398. We know that this series is convergent for Numerical Methods in Computational Finance - изображение 399. A nice exercise is to compute the Picard iterates in the most general case (that is, Numerical Methods in Computational Finance - изображение 400) and to determine under which circumstances the ODE (3.6)has a solution. In this case we have represented the solution of an ODE as a series, and we then analysed this series for which there are many convergence results, such as the root test and the ratio test .

3.3 OTHER MODEL EXAMPLES

We take some model ODEs for motivation.

3.3.1 Bernoulli ODE

The Bernoulli ODE is named after Jacob Bernoulli. It is special in the sense that it is a non-linear equation having an exact solution:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Numerical Methods in Computational Finance»

Представляем Вашему вниманию похожие книги на «Numerical Methods in Computational Finance» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Numerical Methods in Computational Finance»

Обсуждение, отзывы о книге «Numerical Methods in Computational Finance» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x