Daniel J. Duffy - Numerical Methods in Computational Finance

Здесь есть возможность читать онлайн «Daniel J. Duffy - Numerical Methods in Computational Finance» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Numerical Methods in Computational Finance: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Numerical Methods in Computational Finance»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book is a detailed and step-by-step introduction to the mathematical foundations of ordinary and partial differential equations, their approximation by the finite difference method and applications to computational finance. The book is structured so that it can be read by beginners, novices and expert users.
Part A Mathematical Foundation for One-Factor Problems
Chapters 1 to 7 introduce the mathematical and numerical analysis concepts that are needed to understand the finite difference method and its application to computational finance.
Part B Mathematical Foundation for Two-Factor Problems
Chapters 8 to 13 discuss a number of rigorous mathematical techniques relating to elliptic and parabolic partial differential equations in two space variables. In particular, we develop strategies to preprocess and modify a PDE before we approximate it by the finite difference method, thus avoiding ad-hoc and heuristic tricks.
Part C The Foundations of the Finite Difference Method (FDM)
Chapters 14 to 17 introduce the mathematical background to the finite difference method for initial boundary value problems for parabolic PDEs. It encapsulates all the background information to construct stable and accurate finite difference schemes.
Part D Advanced Finite Difference Schemes for Two-Factor Problems
Chapters 18 to 22 introduce a number of modern finite difference methods to approximate the solution of two factor partial differential equations. This is the only book we know of that discusses these methods in any detail.
Part E Test Cases in Computational Finance
Chapters 23 to 26 are concerned with applications based on previous chapters. We discuss finite difference schemes for a wide range of one-factor and two-factor problems.
This book is suitable as an entry-level introduction as well as a detailed treatment of modern methods as used by industry quants and MSc/MFE students in finance. The topics have applications to numerical analysis, science and engineering.
More on computational finance and the author’s online courses, see www.datasim.nl.

Numerical Methods in Computational Finance — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Numerical Methods in Computational Finance», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Then T has a unique fixedpoint Moreover if is any point in - фото 138

Then T has a unique fixed-point картинка 139. Moreover, if картинка 140is any point in X and the sequence Numerical Methods in Computational Finance - изображение 141is defined recursively by the formula Numerical Methods in Computational Finance - изображение 142, then Numerical Methods in Computational Finance - изображение 143and:

In general we assume that X is a Banach space and that T is a linear or - фото 144

In general, we assume that X is a Banach space and that T is a linear or non-linear mapping of X into itself. We then say that x is a fixed point of T if картинка 145.

1.7 SUMMARY AND CONCLUSIONS

In this chapter we gave an introduction to a number of relevant mathematical concepts from real analysis that are used throughout this book, directly or indirectly. We also have introduced other relevant topics in other chapters. To summarise:

Chapter 1: Real analysis

Chapter 4: Finite dimensional vector spaces

Chapter 5: Numerical linear algebra

Chapter 16: Complex analysis

In this way we hope that this book becomes more self-contained than otherwise.

CHAPTER 2 Ordinary Differential Equations (ODEs), Part 1

It is better to solve one problem five different ways, than to solve five problems one way .

George Pólya.

2.1 INTRODUCTION AND OBJECTIVES

In this chapter we introduce a class of differential equations in which the highest order derivative is one. Furthermore, these equations have a single independent variable (which in nearly all applications plays the role of time). In short, these are termed ordinary differential equations (ODEs) precisely because of the dependence on a single variable.

ODEs crop up in many application areas, such as mechanics, biology, engineering, dynamical systems, economics and finance, to name just a few. It is for this reason that we devote two dedicated chapters to them.

The following topics are discussed in this chapter:

Motivational examples of ODEs

Qualitative properties of ODEs

Common finite difference schemes for initial value problems for ODEs

Some theoretical foundations.

In Chapter 3we continue with our discussion of ODEs, including code examples in C++ and Python.

2.2 BACKGROUND AND PROBLEM STATEMENT

In this section we introduce the very first differential equation of this book. It is a scalar first-order linear ordinary differential equation (ODE), and we shall analyse it from several qualitative and quantitative viewpoints.

Consider a bounded interval картинка 146where картинка 147. This interval could represent time or distance, for example. In most cases we shall view this interval as representing time values. In the interval we define the initial value problem (IVP) for an ODE:

(2.1) where is a firstorder linear differential operator involving the derivative - фото 148

where картинка 149is a first-order linear differential operator involving the derivative with respect to the time variable and картинка 150is a strictly positive function in картинка 151. The term картинка 152is called the inhomogeneous forcing term , and it is independent of картинка 153. Finally, the solution to the IVP must be specified at this is the socalled initial condition In general the problem 21has a - фото 154; this is the so-called initial condition .

In general, the problem (2.1)has a unique solution given by:

(2.2) See Hochstadt 1964 where the socalled integration factor is used to - фото 155

(See Hochstadt (1964), where the so-called integration factor is used to determine a solution.)

A special case of (2.1)is when the right-hand term картинка 156is zero and картинка 157is constant; in this case the solution becomes a simple exponential term without any integrals, and this will be used later when we examine difference schemes to determine their feasibility. In particular, a scheme that behaves badly for the above special case will be unsuitable for more general or more complex problems unless some modifications are introduced.

2.2.1 Qualitative Properties of the Solution and Maximum Principle

Before we introduce difference schemes for (2.1), we discuss a number of results that allow us to describe how the solution картинка 158behaves. First, we wish to conclude that if the initial value картинка 159and inhomogeneous term картинка 160are positive, then the solution картинка 161should also be positive for any value картинка 162in картинка 163. This so-called positivity or monotonicity result should be reflected in our difference schemes (not all schemes possess this property). Second, we wish to know how the solution картинка 164grows or decreases as a function of time. The following two results deal with these issues.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Numerical Methods in Computational Finance»

Представляем Вашему вниманию похожие книги на «Numerical Methods in Computational Finance» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Numerical Methods in Computational Finance»

Обсуждение, отзывы о книге «Numerical Methods in Computational Finance» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x