Daniel J. Duffy - Numerical Methods in Computational Finance

Здесь есть возможность читать онлайн «Daniel J. Duffy - Numerical Methods in Computational Finance» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Numerical Methods in Computational Finance: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Numerical Methods in Computational Finance»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book is a detailed and step-by-step introduction to the mathematical foundations of ordinary and partial differential equations, their approximation by the finite difference method and applications to computational finance. The book is structured so that it can be read by beginners, novices and expert users.
Part A Mathematical Foundation for One-Factor Problems
Chapters 1 to 7 introduce the mathematical and numerical analysis concepts that are needed to understand the finite difference method and its application to computational finance.
Part B Mathematical Foundation for Two-Factor Problems
Chapters 8 to 13 discuss a number of rigorous mathematical techniques relating to elliptic and parabolic partial differential equations in two space variables. In particular, we develop strategies to preprocess and modify a PDE before we approximate it by the finite difference method, thus avoiding ad-hoc and heuristic tricks.
Part C The Foundations of the Finite Difference Method (FDM)
Chapters 14 to 17 introduce the mathematical background to the finite difference method for initial boundary value problems for parabolic PDEs. It encapsulates all the background information to construct stable and accurate finite difference schemes.
Part D Advanced Finite Difference Schemes for Two-Factor Problems
Chapters 18 to 22 introduce a number of modern finite difference methods to approximate the solution of two factor partial differential equations. This is the only book we know of that discusses these methods in any detail.
Part E Test Cases in Computational Finance
Chapters 23 to 26 are concerned with applications based on previous chapters. We discuss finite difference schemes for a wide range of one-factor and two-factor problems.
This book is suitable as an entry-level introduction as well as a detailed treatment of modern methods as used by industry quants and MSc/MFE students in finance. The topics have applications to numerical analysis, science and engineering.
More on computational finance and the author’s online courses, see www.datasim.nl.

Numerical Methods in Computational Finance — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Numerical Methods in Computational Finance», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Let us take the example:

You can check that the Jacobian is given by Solving for x and y gives - фото 87

You can check that the Jacobian is given by:

Solving for x and y gives You need to be comfortable with partial - фото 88

Solving for x and y gives:

You need to be comfortable with partial derivatives A good reference is Widder - фото 89

You need to be comfortable with partial derivatives. A good reference is Widder (1989).

1.6 METRIC SPACES AND CAUCHY SEQUENCES

Section 1.6may be skipped on a first reading without loss of continuity.

1.6.1 Metric Spaces

We work with sets and other mathematical structures in which it is possible to assign a so-called distance function or metric between any two of their elements. Let us suppose that X is a set, and let x , y and z be elements of X . Then a metric d on X is a non-negative real-valued function of two variables having the following properties:

The concept of distance is a generalisation of the difference between two real - фото 90

The concept of distance is a generalisation of the difference between two real numbers or the distance between two points in n -dimensional Euclidean space, for example.

Having defined a metric d on a set X , we then say that the pair ( X , d ) is a metric space . We give some examples of metrics and metric spaces:

1 We define the set X of all continuous real-valued functions of one variable on the interval [a, b] (we denote this space by C[a, b])), and we define the metric:Then (X, d) is a metric space.

2 n-dimensional Euclidean space, consisting of vectors of real or complex numbers of the form:with metric:

3 Let be the space of all square-integrable functions on the interval [a, b]:We can then define the distance between two functions f and g in this space by the metric:This metric space is important in many branches of mathematics, including probability theory and stochastic calculus.

4 Let X be a non-empty set and let the metric d be defined by:Then (X, d) is a metric space.

Many of the results and theorems in mathematics are valid for metric spaces, and this fact means that the same results are valid for all specialisations of these spaces.

1.6.2 Cauchy Sequences

We define the concept of convergence of a sequence of elements of a metric space X to some element that may or may not be in X . We introduce some definitions that we state for the set of real numbers, but they are valid for any ordered field , which is basically a set of numbers for which every non-zero element has a multiplicative inverse and there is a certain ordering between the numbers in the field.

Definition 1.4A sequence картинка 91of elements on the real line картинка 92is said to be convergent if there exists an element картинка 93such that for each positive element картинка 94in there exists a positive integer such that A simple example is to show - фото 95there exists a positive integer Numerical Methods in Computational Finance - изображение 96such that:

Numerical Methods in Computational Finance - изображение 97

A simple example is to show that the sequence Numerical Methods in Computational Finance - изображение 98converges to 0. To this end, let Numerical Methods in Computational Finance - изображение 99be a positive real number. Then there exists a positive integer Numerical Methods in Computational Finance - изображение 100such that Numerical Methods in Computational Finance - изображение 101whenever картинка 102.

Definition 1.5A sequence картинка 103of elements of an ordered field F is called a Cauchy sequence if for each in F there exists a positive integer such that In other word - фото 104in F there exists a positive integer such that In other words the terms in a Cauchy sequence get close to each - фото 105such that:

In other words the terms in a Cauchy sequence get close to each other while - фото 106

In other words, the terms in a Cauchy sequence get close to each other while the terms of a convergent sequence get close to some fixed element. A convergent sequence is always a Cauchy sequence, but a Cauchy sequence whose elements belong to a field F does not necessarily converge to an element in F . To give an example, let us suppose that F is the set of rational numbers; consider the sequence of integers defined by the Fibonacci recurrence relation :

It can be shown that 114 Now define the sequence of rational numbers by - фото 107

It can be shown that:

(1.14) Now define the sequence of rational numbers by We can show that - фото 108

Now define the sequence of rational numbers by:

We can show that and this limit is not a rational number The Fibonacci - фото 109

We can show that:

and this limit is not a rational number The Fibonacci numbers are useful in - фото 110

and this limit is not a rational number. The Fibonacci numbers are useful in many kinds of applications, such as optimisation (finding the minimum or maximum of a function) and random number generation.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Numerical Methods in Computational Finance»

Представляем Вашему вниманию похожие книги на «Numerical Methods in Computational Finance» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Numerical Methods in Computational Finance»

Обсуждение, отзывы о книге «Numerical Methods in Computational Finance» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x