Daniel J. Duffy - Numerical Methods in Computational Finance

Здесь есть возможность читать онлайн «Daniel J. Duffy - Numerical Methods in Computational Finance» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Numerical Methods in Computational Finance: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Numerical Methods in Computational Finance»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book is a detailed and step-by-step introduction to the mathematical foundations of ordinary and partial differential equations, their approximation by the finite difference method and applications to computational finance. The book is structured so that it can be read by beginners, novices and expert users.
Part A Mathematical Foundation for One-Factor Problems
Chapters 1 to 7 introduce the mathematical and numerical analysis concepts that are needed to understand the finite difference method and its application to computational finance.
Part B Mathematical Foundation for Two-Factor Problems
Chapters 8 to 13 discuss a number of rigorous mathematical techniques relating to elliptic and parabolic partial differential equations in two space variables. In particular, we develop strategies to preprocess and modify a PDE before we approximate it by the finite difference method, thus avoiding ad-hoc and heuristic tricks.
Part C The Foundations of the Finite Difference Method (FDM)
Chapters 14 to 17 introduce the mathematical background to the finite difference method for initial boundary value problems for parabolic PDEs. It encapsulates all the background information to construct stable and accurate finite difference schemes.
Part D Advanced Finite Difference Schemes for Two-Factor Problems
Chapters 18 to 22 introduce a number of modern finite difference methods to approximate the solution of two factor partial differential equations. This is the only book we know of that discusses these methods in any detail.
Part E Test Cases in Computational Finance
Chapters 23 to 26 are concerned with applications based on previous chapters. We discuss finite difference schemes for a wide range of one-factor and two-factor problems.
This book is suitable as an entry-level introduction as well as a detailed treatment of modern methods as used by industry quants and MSc/MFE students in finance. The topics have applications to numerical analysis, science and engineering.
More on computational finance and the author’s online courses, see www.datasim.nl.

Numerical Methods in Computational Finance — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Numerical Methods in Computational Finance», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

An example of a function that is continuous and nowhere differentiable is the Weierstrass function that we can write as a Fourier series :

(1.6) Numerical Methods in Computational Finance - изображение 37

b is a positive odd integer and Numerical Methods in Computational Finance - изображение 38.

This is a jagged function that appears in models of Brownian motion. Each partial sum is continuous, and hence by the uniform limit theorem (which states that the uniform limit of any sequence of continuous functions is continuous), the series (1.6)is continuous.

1.2.4 Classes of Discontinuous Functions

A function that is not continuous at some point is said to be discontinuous at that point. For example, the Heaviside function (1.2)is not continuous at In order to determine if a function is continuous at a point x in an interval - фото 39. In order to determine if a function is continuous at a point x in an interval ( a , b ) we apply the test:

There are two simple discontinuity main categories of discontinuous - фото 40

There are two (simple discontinuity) main categories of discontinuous functions:

First kind: and exists. Then either we have or .

Second kind: a discontinuity that is not of the first kind.

Examples are:

You can check that this latter function has a discontinuity of the first kind - фото 41

You can check that this latter function has a discontinuity of the first kind at картинка 42.

1.3 DIFFERENTIAL CALCULUS

The derivative of a function is one of its fundamental properties. It represents the rate of change of the slope of the function: in other words, how fast the function changes with respect to changes in the independent variable. We focus on real-valued functions of a real variable.

Let Numerical Methods in Computational Finance - изображение 43. Then the derivative of f at x (if it exists) is defined by the limit for 17 This limit may not exist at certain points and it is possible to - фото 44:

(1.7) This limit may not exist at certain points and it is possible to define - фото 45

This limit may not exist at certain points, and it is possible to define right-hand and left-hand limits, that is, one-sided derivatives.

Some results that we learn in high school are:

(1.8) A composite function is a function that we can differentiate using the chain - фото 46

A composite function is a function that we can differentiate using the chain rule that we state as follows:

(1.9) A simple example of use is More challenging examples of composite functions - фото 47

A simple example of use is:

More challenging examples of composite functions are 131 Taylors Theorem - фото 48

More challenging examples of composite functions are:

131 Taylors Theorem Taylors theorem allows us to expand a function as a - фото 49

1.3.1 Taylor's Theorem

Taylor's theorem allows us to expand a function as a series involving higher-order derivatives of a function. We take the Cauchy form (with exact remainder):

(1.10) and We conclude with a discussion of the exponential function It is the - фото 50

and:

We conclude with a discussion of the exponential function It is the only - фото 51

We conclude with a discussion of the exponential function . It is the only function that is the same as its derivative. To see this, we use the formal definition (1.7)of a derivative (and noting that We summarise some useful properties of the exponential function - фото 52):

We summarise some useful properties of the exponential function 132 Big O - фото 53

We summarise some useful properties of the exponential function:

132 Big O and Little o Notation For many applications we need a definition - фото 54

1.3.2 Big O and Little o Notation

For many applications we need a definition of the asymptotic behaviour of quantities such as functions and series; in particular we wish to find bounds on mathematical expressions and applications in computer science. To this end, we introduce the Landau symbols O and o.

Definition 1.2 (O-Notation) .

An example is Definition 13 ONotation - фото 55

An example is:

Definition 13 ONotation An example is - фото 56

Definition 1.3 (O-Notation) .

An example is We note that complexity analysis applies to both continuous and - фото 57

An example is:

We note that complexity analysis applies to both continuous and discrete - фото 58

We note that complexity analysis applies to both continuous and discrete functions.

1.4 PARTIAL DERIVATIVES

In general, we are interested in functions of two (or more) variables. We consider a function of the form:

Numerical Methods in Computational Finance - изображение 59

The variables x and y can take values in a given bounded or unbounded interval. First, we say that f ( x , y ) is continuous at ( a , b ) if the limit:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Numerical Methods in Computational Finance»

Представляем Вашему вниманию похожие книги на «Numerical Methods in Computational Finance» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Numerical Methods in Computational Finance»

Обсуждение, отзывы о книге «Numerical Methods in Computational Finance» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x