Daniel J. Duffy - Numerical Methods in Computational Finance

Здесь есть возможность читать онлайн «Daniel J. Duffy - Numerical Methods in Computational Finance» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Numerical Methods in Computational Finance: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Numerical Methods in Computational Finance»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book is a detailed and step-by-step introduction to the mathematical foundations of ordinary and partial differential equations, their approximation by the finite difference method and applications to computational finance. The book is structured so that it can be read by beginners, novices and expert users.
Part A Mathematical Foundation for One-Factor Problems
Chapters 1 to 7 introduce the mathematical and numerical analysis concepts that are needed to understand the finite difference method and its application to computational finance.
Part B Mathematical Foundation for Two-Factor Problems
Chapters 8 to 13 discuss a number of rigorous mathematical techniques relating to elliptic and parabolic partial differential equations in two space variables. In particular, we develop strategies to preprocess and modify a PDE before we approximate it by the finite difference method, thus avoiding ad-hoc and heuristic tricks.
Part C The Foundations of the Finite Difference Method (FDM)
Chapters 14 to 17 introduce the mathematical background to the finite difference method for initial boundary value problems for parabolic PDEs. It encapsulates all the background information to construct stable and accurate finite difference schemes.
Part D Advanced Finite Difference Schemes for Two-Factor Problems
Chapters 18 to 22 introduce a number of modern finite difference methods to approximate the solution of two factor partial differential equations. This is the only book we know of that discusses these methods in any detail.
Part E Test Cases in Computational Finance
Chapters 23 to 26 are concerned with applications based on previous chapters. We discuss finite difference schemes for a wide range of one-factor and two-factor problems.
This book is suitable as an entry-level introduction as well as a detailed treatment of modern methods as used by industry quants and MSc/MFE students in finance. The topics have applications to numerical analysis, science and engineering.
More on computational finance and the author’s online courses, see www.datasim.nl.

Numerical Methods in Computational Finance — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Numerical Methods in Computational Finance», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Numerical Methods in Computational Finance - изображение 60

exists and is equal to f ( a , b ). We now need definitions for the derivatives of f in the x and y directions.

In general, we calculate the partial derivatives by keeping one variable fixed and differentiating with respect to the other variable; for example:

We now discuss the situation when we introduce a change of variables into some - фото 61

We now discuss the situation when we introduce a change of variables into some problem and then wish to calculate the new partial derivatives. To this end, we start with the variables ( x , y ), and we define new variables ( u , картинка 62). We can think of these as ‘original’ and ‘transformed’ coordinate axes, respectively. Now define the function z ( u , as follows This can be seen as a function of a function The result that - фото 63) as follows:

This can be seen as a function of a function The result that we are - фото 64

This can be seen as a function of a function . The result that we are interested in is the following: if z is a differentiable function of ( u , картинка 65) and u , are themselves continuous functions of x y with partial derivatives then - фото 66are themselves continuous functions of x , y , with partial derivatives, then the following rule holds:

(1.11) This is a fundamental result that we shall apply in this chapter We take a - фото 67

This is a fundamental result that we shall apply in this chapter. We take a simple example of Equation (1.11)to show how things work. To this end, consider the Laplace equation in Cartesian geometry:

Numerical Methods in Computational Finance - изображение 68

We now wish to transform this equation into an equation in a circular region defined by the polar coordinates:

The derivative in r is given by and you can check that the derivative with - фото 69

The derivative in r is given by:

and you can check that the derivative with respect to is henc - фото 70

and you can check that the derivative with respect to is hence and - фото 71is:

hence and Combining these results allows us to w - фото 72

hence:

and Combining these results allows us to write Laplaces equation in polar - фото 73

and:

Combining these results allows us to write Laplaces equation in polar - фото 74

Combining these results allows us to write Laplace's equation in polar coordinates as follows:

Thus the original heat equation in Cartesian coordinates is transformed to a - фото 75

Thus, the original heat equation in Cartesian coordinates is transformed to a PDE of convection-diffusion type in polar coordinates.

We can find a solution to this problem using the Separation of Variables method , for example.

1.5 FUNCTIONS AND IMPLICIT FORMS

Some problems use functions of two variables that are written in the implicit form :

Numerical Methods in Computational Finance - изображение 76

In this case we have an implicit relationship between the variables x and y . We assume that y is a function of x . The basic result for the differentiation of this implicit function is:

(1.12a) Numerical Methods in Computational Finance - изображение 77

or:

(1.12b) Numerical Methods in Computational Finance - изображение 78

We now use this result by posing the following problem. Consider the transformation:

and suppose we wish to transform back To this end we examine the following - фото 79

and suppose we wish to transform back:

To this end we examine the following differentials 113 Let us assume - фото 80

To this end, we examine the following differentials :

(1.13) Let us assume that we wish to find dx and dy given that all other quantities - фото 81

Let us assume that we wish to find dx and dy , given that all other quantities are known. Some arithmetic applied to Equation (1.13)(two equations in two unknowns!) results in:

where J is the Jacobian determinant defined by We can thus conclude the - фото 82

where J is the Jacobian determinant defined by:

Numerical Methods in Computational Finance - изображение 83

We can thus conclude the following result.

Theorem 1.1The functions Numerical Methods in Computational Finance - изображение 84and Numerical Methods in Computational Finance - изображение 85exist if :

are continuous at a b and if the Jacobian determinant is nonzero at a - фото 86

are continuous at ( a , b ) and if the Jacobian determinant is non-zero at ( a , b ).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Numerical Methods in Computational Finance»

Представляем Вашему вниманию похожие книги на «Numerical Methods in Computational Finance» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Numerical Methods in Computational Finance»

Обсуждение, отзывы о книге «Numerical Methods in Computational Finance» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x